dyna3/engine-proto/gram-test/circles-in-triangle.jl
Aaron Fenyes 74c7f64b0c Correct sign of normal in plane utility
Clarify the relevant notes too.
2024-07-18 00:03:12 -07:00

109 lines
3.2 KiB
Julia

include("Engine.jl")
using SparseArrays
# initialize the partial gram matrix for a sphere inscribed in a regular
# tetrahedron
J = Int64[]
K = Int64[]
values = BigFloat[]
for j in 1:9
for k in 1:9
filled = false
if j == 9
if (k <= 5 && k != 2)
push!(values, 0)
filled = true
end
elseif k == 9
if (j <= 5 && j != 2)
push!(values, 0)
filled = true
end
elseif j == k
push!(values, 1)
filled = true
elseif (j == 1 || k == 1)
push!(values, 0)
filled = true
elseif (j == 2 || k == 2)
push!(values, -1)
filled = true
end
if filled
push!(J, j)
push!(K, k)
end
end
end
append!(J, [6, 4, 6, 5, 7, 5, 7, 3, 8, 3, 8, 4])
append!(K, [4, 6, 5, 6, 5, 7, 3, 7, 3, 8, 4, 8])
append!(values, fill(-1, 12))
#= make construction rigid
append!(J, [3, 4, 4, 5])
append!(K, [4, 3, 5, 4])
append!(values, fill(-0.5, 4))
=#
gram = sparse(J, K, values)
# set initial guess (random)
## Random.seed!(58271) # stuck; step size collapses on step 48
## Random.seed!(58272) # good convergence
## Random.seed!(58273) # stuck; step size collapses on step 18
## Random.seed!(58274) # stuck
## Random.seed!(58275) #
## guess = Engine.rand_on_shell(fill(BigFloat(-1), 8))
# set initial guess
guess = hcat(
Engine.plane(BigFloat[0, 0, 1], BigFloat(0)),
Engine.sphere(BigFloat[0, 0, 0], BigFloat(1//2)),
Engine.plane(-BigFloat[1, 0, 0], BigFloat(-1)),
Engine.plane(-BigFloat[cos(2pi/3), sin(2pi/3), 0], BigFloat(-1)),
Engine.plane(-BigFloat[cos(-2pi/3), sin(-2pi/3), 0], BigFloat(-1)),
Engine.sphere(BigFloat[-1, 0, 0], BigFloat(1//5)),
Engine.sphere(BigFloat[cos(-pi/3), sin(-pi/3), 0], BigFloat(1//5)),
Engine.sphere(BigFloat[cos(pi/3), sin(pi/3), 0], BigFloat(1//5)),
BigFloat[0, 0, 0, 0, 1]
)
frozen = [CartesianIndex(j, 9) for j in 4:5]
#=
guess = hcat(
Engine.plane(BigFloat[0, 0, 1], BigFloat(0)),
Engine.sphere(BigFloat[0, 0, 0], BigFloat(0.9)),
Engine.plane(BigFloat[1, 0, 0], BigFloat(1)),
Engine.plane(BigFloat[cos(2pi/3), sin(2pi/3), 0], BigFloat(1)),
Engine.plane(BigFloat[cos(-2pi/3), sin(-2pi/3), 0], BigFloat(1)),
Engine.sphere(4//3*BigFloat[-1, 0, 0], BigFloat(1//3)),
Engine.sphere(4//3*BigFloat[cos(-pi/3), sin(-pi/3), 0], BigFloat(1//3)),
Engine.sphere(4//3*BigFloat[cos(pi/3), sin(pi/3), 0], BigFloat(1//3)),
BigFloat[0, 0, 0, 1, 1]
)
=#
# complete the gram matrix using gradient descent followed by Newton's method
#=
L, history = Engine.realize_gram_gradient(gram, guess, scaled_tol = 0.01)
L_pol, history_pol = Engine.realize_gram_newton(gram, L, rate = 0.3, scaled_tol = 1e-9)
L_pol2, history_pol2 = Engine.realize_gram_newton(gram, L_pol)
=#
L, success, history = Engine.realize_gram(gram, guess, frozen)
completed_gram = L'*Engine.Q*L
println("Completed Gram matrix:\n")
display(completed_gram)
#=
println(
"\nSteps: ",
size(history.scaled_loss, 1),
" + ", size(history_pol.scaled_loss, 1),
" + ", size(history_pol2.scaled_loss, 1)
)
println("Loss: ", history_pol2.scaled_loss[end], "\n")
=#
if success
println("\nTarget accuracy achieved!")
else
println("\nFailed to reach target accuracy")
end
println("Steps: ", size(history.scaled_loss, 1))
println("Loss: ", history.scaled_loss[end], "\n")