74c7f64b0c
Clarify the relevant notes too.
109 lines
3.2 KiB
Julia
109 lines
3.2 KiB
Julia
include("Engine.jl")
|
|
|
|
using SparseArrays
|
|
|
|
# initialize the partial gram matrix for a sphere inscribed in a regular
|
|
# tetrahedron
|
|
J = Int64[]
|
|
K = Int64[]
|
|
values = BigFloat[]
|
|
for j in 1:9
|
|
for k in 1:9
|
|
filled = false
|
|
if j == 9
|
|
if (k <= 5 && k != 2)
|
|
push!(values, 0)
|
|
filled = true
|
|
end
|
|
elseif k == 9
|
|
if (j <= 5 && j != 2)
|
|
push!(values, 0)
|
|
filled = true
|
|
end
|
|
elseif j == k
|
|
push!(values, 1)
|
|
filled = true
|
|
elseif (j == 1 || k == 1)
|
|
push!(values, 0)
|
|
filled = true
|
|
elseif (j == 2 || k == 2)
|
|
push!(values, -1)
|
|
filled = true
|
|
end
|
|
if filled
|
|
push!(J, j)
|
|
push!(K, k)
|
|
end
|
|
end
|
|
end
|
|
append!(J, [6, 4, 6, 5, 7, 5, 7, 3, 8, 3, 8, 4])
|
|
append!(K, [4, 6, 5, 6, 5, 7, 3, 7, 3, 8, 4, 8])
|
|
append!(values, fill(-1, 12))
|
|
#= make construction rigid
|
|
append!(J, [3, 4, 4, 5])
|
|
append!(K, [4, 3, 5, 4])
|
|
append!(values, fill(-0.5, 4))
|
|
=#
|
|
gram = sparse(J, K, values)
|
|
|
|
# set initial guess (random)
|
|
## Random.seed!(58271) # stuck; step size collapses on step 48
|
|
## Random.seed!(58272) # good convergence
|
|
## Random.seed!(58273) # stuck; step size collapses on step 18
|
|
## Random.seed!(58274) # stuck
|
|
## Random.seed!(58275) #
|
|
## guess = Engine.rand_on_shell(fill(BigFloat(-1), 8))
|
|
|
|
# set initial guess
|
|
guess = hcat(
|
|
Engine.plane(BigFloat[0, 0, 1], BigFloat(0)),
|
|
Engine.sphere(BigFloat[0, 0, 0], BigFloat(1//2)),
|
|
Engine.plane(-BigFloat[1, 0, 0], BigFloat(-1)),
|
|
Engine.plane(-BigFloat[cos(2pi/3), sin(2pi/3), 0], BigFloat(-1)),
|
|
Engine.plane(-BigFloat[cos(-2pi/3), sin(-2pi/3), 0], BigFloat(-1)),
|
|
Engine.sphere(BigFloat[-1, 0, 0], BigFloat(1//5)),
|
|
Engine.sphere(BigFloat[cos(-pi/3), sin(-pi/3), 0], BigFloat(1//5)),
|
|
Engine.sphere(BigFloat[cos(pi/3), sin(pi/3), 0], BigFloat(1//5)),
|
|
BigFloat[0, 0, 0, 0, 1]
|
|
)
|
|
frozen = [CartesianIndex(j, 9) for j in 4:5]
|
|
#=
|
|
guess = hcat(
|
|
Engine.plane(BigFloat[0, 0, 1], BigFloat(0)),
|
|
Engine.sphere(BigFloat[0, 0, 0], BigFloat(0.9)),
|
|
Engine.plane(BigFloat[1, 0, 0], BigFloat(1)),
|
|
Engine.plane(BigFloat[cos(2pi/3), sin(2pi/3), 0], BigFloat(1)),
|
|
Engine.plane(BigFloat[cos(-2pi/3), sin(-2pi/3), 0], BigFloat(1)),
|
|
Engine.sphere(4//3*BigFloat[-1, 0, 0], BigFloat(1//3)),
|
|
Engine.sphere(4//3*BigFloat[cos(-pi/3), sin(-pi/3), 0], BigFloat(1//3)),
|
|
Engine.sphere(4//3*BigFloat[cos(pi/3), sin(pi/3), 0], BigFloat(1//3)),
|
|
BigFloat[0, 0, 0, 1, 1]
|
|
)
|
|
=#
|
|
|
|
# complete the gram matrix using gradient descent followed by Newton's method
|
|
#=
|
|
L, history = Engine.realize_gram_gradient(gram, guess, scaled_tol = 0.01)
|
|
L_pol, history_pol = Engine.realize_gram_newton(gram, L, rate = 0.3, scaled_tol = 1e-9)
|
|
L_pol2, history_pol2 = Engine.realize_gram_newton(gram, L_pol)
|
|
=#
|
|
L, success, history = Engine.realize_gram(gram, guess, frozen)
|
|
completed_gram = L'*Engine.Q*L
|
|
println("Completed Gram matrix:\n")
|
|
display(completed_gram)
|
|
#=
|
|
println(
|
|
"\nSteps: ",
|
|
size(history.scaled_loss, 1),
|
|
" + ", size(history_pol.scaled_loss, 1),
|
|
" + ", size(history_pol2.scaled_loss, 1)
|
|
)
|
|
println("Loss: ", history_pol2.scaled_loss[end], "\n")
|
|
=#
|
|
if success
|
|
println("\nTarget accuracy achieved!")
|
|
else
|
|
println("\nFailed to reach target accuracy")
|
|
end
|
|
println("Steps: ", size(history.scaled_loss, 1))
|
|
println("Loss: ", history.scaled_loss[end], "\n") |