203 lines
5.9 KiB
Julia
203 lines
5.9 KiB
Julia
module Algebraic
|
|
|
|
export
|
|
codimension, dimension,
|
|
Construction, realize,
|
|
Element, Point, Sphere,
|
|
Relation, LiesOn, AlignsWithBy, mprod
|
|
|
|
import Subscripts
|
|
using LinearAlgebra
|
|
using AbstractAlgebra
|
|
using Groebner
|
|
using ...HittingSet
|
|
|
|
# --- commutative algebra ---
|
|
|
|
# as of version 0.36.6, AbstractAlgebra only supports ideals in multivariate
|
|
# polynomial rings when the coefficients are integers. we use Groebner to extend
|
|
# support to rationals and to finite fields of prime order
|
|
Generic.reduce_gens(I::Generic.Ideal{U}) where {T <: FieldElement, U <: MPolyRingElem{T}} =
|
|
Generic.Ideal{U}(base_ring(I), groebner(gens(I)))
|
|
|
|
function codimension(I::Generic.Ideal{U}, maxdepth = Inf) where {T <: RingElement, U <: MPolyRingElem{T}}
|
|
leading = [exponent_vector(f, 1) for f in gens(I)]
|
|
targets = [Set(findall(.!iszero.(exp_vec))) for exp_vec in leading]
|
|
length(HittingSet.solve(HittingSetProblem(targets), maxdepth))
|
|
end
|
|
|
|
dimension(I::Generic.Ideal{U}, maxdepth = Inf) where {T <: RingElement, U <: MPolyRingElem{T}} =
|
|
length(gens(base_ring(I))) - codimension(I, maxdepth)
|
|
|
|
# --- primitve elements ---
|
|
|
|
abstract type Element{T} end
|
|
|
|
mutable struct Point{T} <: Element{T}
|
|
coords::Vector{MPolyRingElem{T}}
|
|
vec::Union{Vector{MPolyRingElem{T}}, Nothing}
|
|
rel::Nothing
|
|
|
|
## [to do] constructor argument never needed?
|
|
Point{T}(
|
|
coords::Vector{MPolyRingElem{T}} = MPolyRingElem{T}[],
|
|
vec::Union{Vector{MPolyRingElem{T}}, Nothing} = nothing
|
|
) where T = new(coords, vec, nothing)
|
|
end
|
|
|
|
function buildvec!(pt::Point)
|
|
coordring = parent(pt.coords[1])
|
|
pt.vec = [one(coordring), dot(pt.coords, pt.coords), pt.coords...]
|
|
end
|
|
|
|
mutable struct Sphere{T} <: Element{T}
|
|
coords::Vector{MPolyRingElem{T}}
|
|
vec::Union{Vector{MPolyRingElem{T}}, Nothing}
|
|
rel::Union{MPolyRingElem{T}, Nothing}
|
|
|
|
## [to do] constructor argument never needed?
|
|
Sphere{T}(
|
|
coords::Vector{MPolyRingElem{T}} = MPolyRingElem{T}[],
|
|
vec::Union{Vector{MPolyRingElem{T}}, Nothing} = nothing,
|
|
rel::Union{MPolyRingElem{T}, Nothing} = nothing
|
|
) where T = new(coords, vec, rel)
|
|
end
|
|
|
|
function buildvec!(sph::Sphere)
|
|
coordring = parent(sph.coords[1])
|
|
sph.vec = sph.coords
|
|
sph.rel = mprod(sph.coords, sph.coords) + one(coordring)
|
|
end
|
|
|
|
const coordnames = IdDict{Symbol, Vector{Union{Symbol, Nothing}}}(
|
|
nameof(Point) => [nothing, nothing, :xₚ, :yₚ, :zₚ],
|
|
nameof(Sphere) => [:rₛ, :sₛ, :xₛ, :yₛ, :zₛ]
|
|
)
|
|
|
|
coordname(elt::Element, index) = coordnames[nameof(typeof(elt))][index]
|
|
|
|
function pushcoordname!(coordnamelist, indexed_elt::Tuple{Any, Element}, coordindex)
|
|
eltindex, elt = indexed_elt
|
|
name = coordname(elt, coordindex)
|
|
if !isnothing(name)
|
|
subscript = Subscripts.sub(string(eltindex))
|
|
push!(coordnamelist, Symbol(name, subscript))
|
|
end
|
|
end
|
|
|
|
function takecoord!(coordlist, indexed_elt::Tuple{Any, Element}, coordindex)
|
|
elt = indexed_elt[2]
|
|
if !isnothing(coordname(elt, coordindex))
|
|
push!(elt.coords, popfirst!(coordlist))
|
|
end
|
|
end
|
|
|
|
# --- primitive relations ---
|
|
|
|
abstract type Relation{T} end
|
|
|
|
mprod(v, w) = (v[1]*w[2] + w[1]*v[2]) / 2 - dot(v[3:end], w[3:end])
|
|
|
|
# elements: point, sphere
|
|
struct LiesOn{T} <: Relation{T}
|
|
elements::Vector{Element{T}}
|
|
|
|
LiesOn{T}(pt::Point{T}, sph::Sphere{T}) where T = new{T}([pt, sph])
|
|
end
|
|
|
|
equation(rel::LiesOn) = mprod(rel.elements[1].vec, rel.elements[2].vec)
|
|
|
|
# elements: sphere, sphere
|
|
struct AlignsWithBy{T} <: Relation{T}
|
|
elements::Vector{Element{T}}
|
|
cos_angle::T
|
|
|
|
AlignsWithBy{T}(sph1::Sphere{T}, sph2::Sphere{T}, cos_angle::T) where T = new{T}([sph1, sph2], cos_angle)
|
|
end
|
|
|
|
equation(rel::AlignsWithBy) = mprod(rel.elements[1].vec, rel.elements[2].vec) - rel.cos_angle
|
|
|
|
# --- constructions ---
|
|
|
|
mutable struct Construction{T}
|
|
points::Vector{Point{T}}
|
|
spheres::Vector{Sphere{T}}
|
|
relations::Vector{Relation{T}}
|
|
|
|
function Construction{T}(; elements = Vector{Element{T}}(), relations = Vector{Relation{T}}()) where T
|
|
allelements = union(elements, (rel.elements for rel in relations)...)
|
|
new{T}(
|
|
filter(elt -> isa(elt, Point), allelements),
|
|
filter(elt -> isa(elt, Sphere), allelements),
|
|
relations
|
|
)
|
|
end
|
|
end
|
|
|
|
function Base.push!(ctx::Construction{T}, elt::Point{T}) where T
|
|
push!(ctx.points, elt)
|
|
end
|
|
|
|
function Base.push!(ctx::Construction{T}, elt::Sphere{T}) where T
|
|
push!(ctx.spheres, elt)
|
|
end
|
|
|
|
function Base.push!(ctx::Construction{T}, rel::Relation{T}) where T
|
|
push!(ctx.relations, rel)
|
|
for elt in rel.elements
|
|
push!(ctx, elt)
|
|
end
|
|
end
|
|
|
|
function realize(ctx::Construction{T}) where T
|
|
# collect coordinate names
|
|
coordnamelist = Symbol[]
|
|
eltenum = enumerate(Iterators.flatten((ctx.spheres, ctx.points)))
|
|
for coordindex in 1:5
|
|
for indexed_elt in eltenum
|
|
pushcoordname!(coordnamelist, indexed_elt, coordindex)
|
|
end
|
|
end
|
|
|
|
# construct coordinate ring
|
|
coordring, coordqueue = polynomial_ring(parent_type(T)(), coordnamelist, ordering = :degrevlex)
|
|
|
|
# retrieve coordinates
|
|
for (_, elt) in eltenum
|
|
empty!(elt.coords)
|
|
end
|
|
for coordindex in 1:5
|
|
for indexed_elt in eltenum
|
|
takecoord!(coordqueue, indexed_elt, coordindex)
|
|
end
|
|
end
|
|
|
|
# construct coordinate vectors
|
|
for (_, elt) in eltenum
|
|
buildvec!(elt)
|
|
end
|
|
|
|
# turn relations into equations
|
|
eqns = vcat(
|
|
equation.(ctx.relations),
|
|
[elt.rel for (_, elt) in eltenum if !isnothing(elt.rel)]
|
|
)
|
|
|
|
# add relations to center, orient, and scale the construction
|
|
# [to do] the scaling constraint, as written, can be impossible to satisfy
|
|
# when all of the spheres have to go through the origin
|
|
if !isempty(ctx.points)
|
|
append!(eqns, [sum(pt.coords[k] for pt in ctx.points) for k in 1:3])
|
|
end
|
|
if !isempty(ctx.spheres)
|
|
append!(eqns, [sum(sph.coords[k] for sph in ctx.spheres) for k in 3:4])
|
|
end
|
|
n_elts = length(ctx.points) + length(ctx.spheres)
|
|
if n_elts > 0
|
|
push!(eqns, sum(elt.vec[2] for elt in Iterators.flatten((ctx.points, ctx.spheres))) - n_elts)
|
|
end
|
|
|
|
(Generic.Ideal(coordring, eqns), eqns)
|
|
end
|
|
|
|
end |