dyna3/engine-proto/Engine.jl
2024-02-04 16:08:13 -05:00

218 lines
6.2 KiB
Julia

include("HittingSet.jl")
module Engine
export Construction, mprod
import Subscripts
using LinearAlgebra
using AbstractAlgebra
using Groebner
using ..HittingSet
# --- commutative algebra ---
# as of version 0.36.6, AbstractAlgebra only supports ideals in multivariate
# polynomial rings when the coefficients are integers. we use Groebner to extend
# support to rationals and to finite fields of prime order
Generic.reduce_gens(I::Generic.Ideal{U}) where {T <: FieldElement, U <: MPolyRingElem{T}} =
Generic.Ideal{U}(base_ring(I), groebner(gens(I)))
function codimension(I::Generic.Ideal{U}, maxdepth = Inf) where {T <: RingElement, U <: MPolyRingElem{T}}
leading = [exponent_vector(f, 1) for f in gens(I)]
targets = [Set(findall(.!iszero.(exp_vec))) for exp_vec in leading]
length(HittingSet.solve(HittingSetProblem(targets), maxdepth))
end
dimension(I::Generic.Ideal{U}, maxdepth = Inf) where {T <: RingElement, U <: MPolyRingElem{T}} =
length(gens(base_ring(I))) - codimension(I, maxdepth)
# --- primitve elements ---
abstract type Element{T} end
mutable struct Point{T} <: Element{T}
coords::Vector{MPolyRingElem{T}}
vec::Union{Vector{MPolyRingElem{T}}, Nothing}
rel::Nothing
## [to do] constructor argument never needed?
Point{T}(
coords::Vector{MPolyRingElem{T}} = MPolyRingElem{T}[],
vec::Union{Vector{MPolyRingElem{T}}, Nothing} = nothing
) where T = new(coords, vec, nothing)
end
function buildvec!(pt::Point)
coordring = parent(pt.coords[1])
pt.vec = [one(coordring), dot(pt.coords, pt.coords), pt.coords...]
end
mutable struct Sphere{T} <: Element{T}
coords::Vector{MPolyRingElem{T}}
vec::Union{Vector{MPolyRingElem{T}}, Nothing}
rel::Union{MPolyRingElem{T}, Nothing}
## [to do] constructor argument never needed?
Sphere{T}(
coords::Vector{MPolyRingElem{T}} = MPolyRingElem{T}[],
vec::Union{Vector{MPolyRingElem{T}}, Nothing} = nothing,
rel::Union{MPolyRingElem{T}, Nothing} = nothing
) where T = new(coords, vec, rel)
end
function buildvec!(sph::Sphere)
coordring = parent(sph.coords[1])
sph.vec = sph.coords
sph.rel = mprod(sph.coords, sph.coords) + one(coordring)
end
const coordnames = IdDict{Symbol, Vector{Union{Symbol, Nothing}}}(
nameof(Point) => [nothing, nothing, :xₚ, :yₚ, :zₚ],
nameof(Sphere) => [:rₛ, :sₛ, :xₛ, :yₛ, :zₛ]
)
coordname(elt::Element, index) = coordnames[nameof(typeof(elt))][index]
function pushcoordname!(coordnamelist, indexed_elt::Tuple{Any, Element}, coordindex)
eltindex, elt = indexed_elt
name = coordname(elt, coordindex)
if !isnothing(name)
subscript = Subscripts.sub(string(eltindex))
push!(coordnamelist, Symbol(name, subscript))
end
end
function takecoord!(coordlist, indexed_elt::Tuple{Any, Element}, coordindex)
elt = indexed_elt[2]
if !isnothing(coordname(elt, coordindex))
push!(elt.coords, popfirst!(coordlist))
end
end
# --- primitive relations ---
abstract type Relation{T} end
mprod(v, w) = (v[1]*w[2] + w[1]*v[2]) / 2 - dot(v[3:end], w[3:end])
# elements: point, sphere
struct LiesOn{T} <: Relation{T}
elements::Vector{Element{T}}
LiesOn{T}(pt::Point{T}, sph::Sphere{T}) where T = new{T}([pt, sph])
end
equation(rel::LiesOn) = mprod(rel.elements[1].vec, rel.elements[2].vec)
# elements: sphere, sphere
struct AlignsWithBy{T} <: Relation{T}
elements::Vector{Element{T}}
cos_angle::T
AlignsWithBy{T}(sph1::Sphere{T}, sph2::Sphere{T}, cos_angle::T) where T = new{T}([sph1, sph2], cos_angle)
end
equation(rel::AlignsWithBy) = mprod(rel.elements[1].vec, rel.elements[2].vec) - rel.cos_angle
# --- constructions ---
mutable struct Construction{T}
points::Set{Point{T}}
spheres::Set{Sphere{T}}
relations::Set{Relation{T}}
function Construction{T}(; elements = Set{Element{T}}(), relations = Set{Relation{T}}()) where T
allelements = union(elements, (rel.elements for rel in relations)...)
new{T}(
filter(elt -> isa(elt, Point), allelements),
filter(elt -> isa(elt, Sphere), allelements),
relations
)
end
end
function Base.push!(ctx::Construction{T}, elt::Point{T}) where T
push!(ctx.points, elt)
end
function Base.push!(ctx::Construction{T}, elt::Sphere{T}) where T
push!(ctx.spheres, elt)
end
function Base.push!(ctx::Construction{T}, rel::Relation{T}) where T
push!(ctx.relations, rel)
for elt in rel.elements
push!(ctx, elt)
end
end
function realize(ctx::Construction{T}) where T
# collect coordinate names
coordnamelist = Symbol[]
eltenum = enumerate(Iterators.flatten((ctx.spheres, ctx.points)))
for coordindex in 1:5
for indexed_elt in eltenum
pushcoordname!(coordnamelist, indexed_elt, coordindex)
end
end
# construct coordinate ring
coordring, coordqueue = polynomial_ring(parent_type(T)(), coordnamelist, ordering = :degrevlex)
# retrieve coordinates
for (_, elt) in eltenum
empty!(elt.coords)
end
for coordindex in 1:5
for indexed_elt in eltenum
takecoord!(coordqueue, indexed_elt, coordindex)
end
end
# construct coordinate vectors
for (_, elt) in eltenum
buildvec!(elt)
end
# turn relations into equations
eqns = vcat(
equation.(ctx.relations),
[elt.rel for (_, elt) in eltenum if !isnothing(elt.rel)],
)
Generic.Ideal(coordring, eqns)
end
end
# ~~~ sandbox setup ~~~
CoeffType = Rational{Int64}
a = Engine.Point{CoeffType}()
s = Engine.Sphere{CoeffType}()
a_on_s = Engine.LiesOn{CoeffType}(a, s)
ctx = Engine.Construction{CoeffType}(elements = Set([a]), relations= Set([a_on_s]))
ideal_a_s = Engine.realize(ctx)
println("A point on a sphere: ", Engine.dimension(ideal_a_s), " degrees of freeom")
b = Engine.Point{CoeffType}()
b_on_s = Engine.LiesOn{CoeffType}(b, s)
Engine.push!(ctx, b)
Engine.push!(ctx, s)
Engine.push!(ctx, b_on_s)
ideal_ab_s = Engine.realize(ctx)
println("Two points on a sphere: ", Engine.dimension(ideal_ab_s), " degrees of freeom")
spheres = [Engine.Sphere{CoeffType}() for _ in 1:3]
tangencies = [
Engine.AlignsWithBy{CoeffType}(
spheres[n],
spheres[mod1(n+1, length(spheres))],
CoeffType(-1//1)
)
for n in 1:3
]
ctx_tan_sph = Engine.Construction{CoeffType}(elements = Set(spheres), relations = Set(tangencies))
ideal_tan_sph = Engine.realize(ctx_tan_sph)
println("Three mutually tangent spheres: ", Engine.dimension(ideal_tan_sph), " degrees of freeom")