316 lines
9.6 KiB
Julia
316 lines
9.6 KiB
Julia
include("HittingSet.jl")
|
|
|
|
module Engine
|
|
|
|
export Construction, mprod, codimension, dimension
|
|
|
|
import Subscripts
|
|
using LinearAlgebra
|
|
using AbstractAlgebra
|
|
using Groebner
|
|
using HomotopyContinuation: Variable, Expression, System
|
|
using ..HittingSet
|
|
|
|
# --- commutative algebra ---
|
|
|
|
# as of version 0.36.6, AbstractAlgebra only supports ideals in multivariate
|
|
# polynomial rings when the coefficients are integers. we use Groebner to extend
|
|
# support to rationals and to finite fields of prime order
|
|
Generic.reduce_gens(I::Generic.Ideal{U}) where {T <: FieldElement, U <: MPolyRingElem{T}} =
|
|
Generic.Ideal{U}(base_ring(I), groebner(gens(I)))
|
|
|
|
function codimension(I::Generic.Ideal{U}, maxdepth = Inf) where {T <: RingElement, U <: MPolyRingElem{T}}
|
|
leading = [exponent_vector(f, 1) for f in gens(I)]
|
|
targets = [Set(findall(.!iszero.(exp_vec))) for exp_vec in leading]
|
|
length(HittingSet.solve(HittingSetProblem(targets), maxdepth))
|
|
end
|
|
|
|
dimension(I::Generic.Ideal{U}, maxdepth = Inf) where {T <: RingElement, U <: MPolyRingElem{T}} =
|
|
length(gens(base_ring(I))) - codimension(I, maxdepth)
|
|
|
|
# hat tip Sascha Timme
|
|
# https://github.com/JuliaHomotopyContinuation/HomotopyContinuation.jl/issues/520#issuecomment-1317681521
|
|
function Base.convert(::Type{Expression}, f::MPolyRingElem)
|
|
variables = Variable.(symbols(parent(f)))
|
|
f_data = zip(coefficients(f), exponent_vectors(f))
|
|
sum(cf * prod(variables .^ exp_vec) for (cf, exp_vec) in f_data)
|
|
end
|
|
|
|
# create a ModelKit.System from an ideal in a multivariate polynomial ring. the
|
|
# variable ordering is taken from the polynomial ring
|
|
function System(I::Generic.Ideal)
|
|
eqns = Expression.(gens(I))
|
|
variables = Variable.(symbols(base_ring(I)))
|
|
System(eqns, variables = variables)
|
|
end
|
|
|
|
## [to do] not needed right now
|
|
# create a ModelKit.System from a list of elements of a multivariate polynomial
|
|
# ring. the variable ordering is taken from the polynomial ring
|
|
##function System(eqns::AbstractVector{MPolyRingElem})
|
|
## if isempty(eqns)
|
|
## return System([])
|
|
## else
|
|
## variables = Variable.(symbols(parent(f)))
|
|
## return System(Expression.(eqns), variables = variables)
|
|
## end
|
|
##end
|
|
|
|
# --- primitve elements ---
|
|
|
|
abstract type Element{T} end
|
|
|
|
mutable struct Point{T} <: Element{T}
|
|
coords::Vector{MPolyRingElem{T}}
|
|
vec::Union{Vector{MPolyRingElem{T}}, Nothing}
|
|
rel::Nothing
|
|
|
|
## [to do] constructor argument never needed?
|
|
Point{T}(
|
|
coords::Vector{MPolyRingElem{T}} = MPolyRingElem{T}[],
|
|
vec::Union{Vector{MPolyRingElem{T}}, Nothing} = nothing
|
|
) where T = new(coords, vec, nothing)
|
|
end
|
|
|
|
function buildvec!(pt::Point)
|
|
coordring = parent(pt.coords[1])
|
|
pt.vec = [one(coordring), dot(pt.coords, pt.coords), pt.coords...]
|
|
end
|
|
|
|
mutable struct Sphere{T} <: Element{T}
|
|
coords::Vector{MPolyRingElem{T}}
|
|
vec::Union{Vector{MPolyRingElem{T}}, Nothing}
|
|
rel::Union{MPolyRingElem{T}, Nothing}
|
|
|
|
## [to do] constructor argument never needed?
|
|
Sphere{T}(
|
|
coords::Vector{MPolyRingElem{T}} = MPolyRingElem{T}[],
|
|
vec::Union{Vector{MPolyRingElem{T}}, Nothing} = nothing,
|
|
rel::Union{MPolyRingElem{T}, Nothing} = nothing
|
|
) where T = new(coords, vec, rel)
|
|
end
|
|
|
|
function buildvec!(sph::Sphere)
|
|
coordring = parent(sph.coords[1])
|
|
sph.vec = sph.coords
|
|
sph.rel = mprod(sph.coords, sph.coords) + one(coordring)
|
|
end
|
|
|
|
const coordnames = IdDict{Symbol, Vector{Union{Symbol, Nothing}}}(
|
|
nameof(Point) => [nothing, nothing, :xₚ, :yₚ, :zₚ],
|
|
nameof(Sphere) => [:rₛ, :sₛ, :xₛ, :yₛ, :zₛ]
|
|
)
|
|
|
|
coordname(elt::Element, index) = coordnames[nameof(typeof(elt))][index]
|
|
|
|
function pushcoordname!(coordnamelist, indexed_elt::Tuple{Any, Element}, coordindex)
|
|
eltindex, elt = indexed_elt
|
|
name = coordname(elt, coordindex)
|
|
if !isnothing(name)
|
|
subscript = Subscripts.sub(string(eltindex))
|
|
push!(coordnamelist, Symbol(name, subscript))
|
|
end
|
|
end
|
|
|
|
function takecoord!(coordlist, indexed_elt::Tuple{Any, Element}, coordindex)
|
|
elt = indexed_elt[2]
|
|
if !isnothing(coordname(elt, coordindex))
|
|
push!(elt.coords, popfirst!(coordlist))
|
|
end
|
|
end
|
|
|
|
# --- primitive relations ---
|
|
|
|
abstract type Relation{T} end
|
|
|
|
mprod(v, w) = (v[1]*w[2] + w[1]*v[2]) / 2 - dot(v[3:end], w[3:end])
|
|
|
|
# elements: point, sphere
|
|
struct LiesOn{T} <: Relation{T}
|
|
elements::Vector{Element{T}}
|
|
|
|
LiesOn{T}(pt::Point{T}, sph::Sphere{T}) where T = new{T}([pt, sph])
|
|
end
|
|
|
|
equation(rel::LiesOn) = mprod(rel.elements[1].vec, rel.elements[2].vec)
|
|
|
|
# elements: sphere, sphere
|
|
struct AlignsWithBy{T} <: Relation{T}
|
|
elements::Vector{Element{T}}
|
|
cos_angle::T
|
|
|
|
AlignsWithBy{T}(sph1::Sphere{T}, sph2::Sphere{T}, cos_angle::T) where T = new{T}([sph1, sph2], cos_angle)
|
|
end
|
|
|
|
equation(rel::AlignsWithBy) = mprod(rel.elements[1].vec, rel.elements[2].vec) - rel.cos_angle
|
|
|
|
# --- constructions ---
|
|
|
|
mutable struct Construction{T}
|
|
points::Set{Point{T}}
|
|
spheres::Set{Sphere{T}}
|
|
relations::Set{Relation{T}}
|
|
|
|
function Construction{T}(; elements = Set{Element{T}}(), relations = Set{Relation{T}}()) where T
|
|
allelements = union(elements, (rel.elements for rel in relations)...)
|
|
new{T}(
|
|
filter(elt -> isa(elt, Point), allelements),
|
|
filter(elt -> isa(elt, Sphere), allelements),
|
|
relations
|
|
)
|
|
end
|
|
end
|
|
|
|
function Base.push!(ctx::Construction{T}, elt::Point{T}) where T
|
|
push!(ctx.points, elt)
|
|
end
|
|
|
|
function Base.push!(ctx::Construction{T}, elt::Sphere{T}) where T
|
|
push!(ctx.spheres, elt)
|
|
end
|
|
|
|
function Base.push!(ctx::Construction{T}, rel::Relation{T}) where T
|
|
push!(ctx.relations, rel)
|
|
for elt in rel.elements
|
|
push!(ctx, elt)
|
|
end
|
|
end
|
|
|
|
function realize(ctx::Construction{T}) where T
|
|
# collect coordinate names
|
|
coordnamelist = Symbol[]
|
|
eltenum = enumerate(Iterators.flatten((ctx.spheres, ctx.points)))
|
|
for coordindex in 1:5
|
|
for indexed_elt in eltenum
|
|
pushcoordname!(coordnamelist, indexed_elt, coordindex)
|
|
end
|
|
end
|
|
|
|
# construct coordinate ring
|
|
coordring, coordqueue = polynomial_ring(parent_type(T)(), coordnamelist, ordering = :degrevlex)
|
|
|
|
# retrieve coordinates
|
|
for (_, elt) in eltenum
|
|
empty!(elt.coords)
|
|
end
|
|
for coordindex in 1:5
|
|
for indexed_elt in eltenum
|
|
takecoord!(coordqueue, indexed_elt, coordindex)
|
|
end
|
|
end
|
|
|
|
# construct coordinate vectors
|
|
for (_, elt) in eltenum
|
|
buildvec!(elt)
|
|
end
|
|
|
|
# turn relations into equations
|
|
eqns = vcat(
|
|
equation.(ctx.relations),
|
|
[elt.rel for (_, elt) in eltenum if !isnothing(elt.rel)]
|
|
)
|
|
|
|
# add relations to center and orient the construction
|
|
if !isempty(ctx.points)
|
|
append!(eqns, [sum(pt.coords[k] for pt in ctx.points) for k in 1:3])
|
|
end
|
|
if !isempty(ctx.spheres)
|
|
append!(eqns, [sum(sph.coords[k] for sph in ctx.spheres) for k in 3:4])
|
|
end
|
|
|
|
(Generic.Ideal(coordring, eqns), eqns)
|
|
end
|
|
|
|
end
|
|
|
|
# ~~~ sandbox setup ~~~
|
|
|
|
using Random
|
|
using Distributions
|
|
using AbstractAlgebra
|
|
using HomotopyContinuation
|
|
|
|
CoeffType = Rational{Int64}
|
|
|
|
a = Engine.Point{CoeffType}()
|
|
s = Engine.Sphere{CoeffType}()
|
|
a_on_s = Engine.LiesOn{CoeffType}(a, s)
|
|
ctx = Engine.Construction{CoeffType}(elements = Set([a]), relations= Set([a_on_s]))
|
|
##ideal_a_s = Engine.realize(ctx)
|
|
##println("A point on a sphere: ", Engine.dimension(ideal_a_s), " degrees of freedom")
|
|
|
|
b = Engine.Point{CoeffType}()
|
|
b_on_s = Engine.LiesOn{CoeffType}(b, s)
|
|
Engine.push!(ctx, b)
|
|
Engine.push!(ctx, s)
|
|
Engine.push!(ctx, b_on_s)
|
|
ideal_ab_s, eqns_ab_s = Engine.realize(ctx)
|
|
freedom = Engine.dimension(ideal_ab_s)
|
|
println("Two points on a sphere: ", freedom, " degrees of freedom")
|
|
|
|
##spheres = [Engine.Sphere{CoeffType}() for _ in 1:3]
|
|
##tangencies = [
|
|
## Engine.AlignsWithBy{CoeffType}(
|
|
## spheres[n],
|
|
## spheres[mod1(n+1, length(spheres))],
|
|
## CoeffType(-1//1)
|
|
## )
|
|
## for n in 1:3
|
|
##]
|
|
##ctx_tan_sph = Engine.Construction{CoeffType}(elements = Set(spheres), relations = Set(tangencies))
|
|
##ideal_tan_sph = Engine.realize(ctx_tan_sph)
|
|
##println("Three mutually tangent spheres: ", Engine.dimension(ideal_tan_sph), " degrees of freedom")
|
|
|
|
# --- test rational cut ---
|
|
|
|
coordring = base_ring(ideal_ab_s)
|
|
vbls = Variable.(symbols(coordring))
|
|
##cut_system = CompiledSystem(System([eqns_ab_s; cut], variables = vbls))
|
|
##cut_result = HomotopyContinuation.solve(cut_system)
|
|
##println("non-singular solutions:")
|
|
##for soln in solutions(cut_result)
|
|
## display(soln)
|
|
##end
|
|
##println("singular solutions:")
|
|
##for sing in singular(cut_result)
|
|
## display(sing.solution)
|
|
##end
|
|
|
|
# test a random witness set
|
|
system = CompiledSystem(System(eqns_ab_s, variables = vbls))
|
|
max_slope = 2
|
|
binom = Binomial(2max_slope, 1/2)
|
|
Random.seed!(6071)
|
|
samples = []
|
|
for _ in 1:3
|
|
cut_matrix = rand(binom, freedom, length(gens(coordring))) .- max_slope
|
|
##cut_matrix = [
|
|
## 1 1 1 1 0 1 1 0 1 1 0;
|
|
## 1 2 1 2 0 1 1 0 1 1 0;
|
|
## 1 1 0 1 0 1 2 0 2 0 0
|
|
##]
|
|
sph_z_ind = indexin([sph.coords[5] for sph in ctx.spheres], gens(coordring))
|
|
cut_offset = [sum(cf[sph_z_ind]) for cf in eachrow(cut_matrix)]
|
|
println("sphere z variables: ", vbls[sph_z_ind])
|
|
display(cut_matrix)
|
|
display(cut_offset)
|
|
cut_subspace = LinearSubspace(cut_matrix, cut_offset)
|
|
wtns = witness_set(system, cut_subspace)
|
|
append!(samples, solution.(filter(isreal, results(wtns))))
|
|
end
|
|
println("$(length(samples)) sample solutions:")
|
|
for soln in samples
|
|
display([vbls round.(soln, digits = 6)])
|
|
k_sq = abs2(soln[1])
|
|
if abs2(soln[end-2]) > 1e-12
|
|
if k_sq < 1e-12
|
|
println("center at infinity: z coordinates $(round(soln[end], digits = 6)) and $(round(soln[end-1], digits = 6))}")
|
|
else
|
|
sum_sq = soln[4]^2 + soln[7]^2 + soln[end-2]^2 / k_sq
|
|
println("center on z axis: r² = $(round(1/k_sq, digits = 6)), x² + y² + h² = $(round(sum_sq, digits = 6))")
|
|
end
|
|
else
|
|
sum_sq = sum(soln[[4, 7, 10]] .^ 2)
|
|
println("center at origin: r² = $(round(1/k_sq, digits = 6)); x² + y² + z² = $(round(sum_sq, digits = 6))")
|
|
end
|
|
end |