Switch to Euclidean-invariant projection onto tangent space of solution variety #34

Open
Vectornaut wants to merge 4 commits from uniform-projection into main
3 changed files with 25 additions and 25 deletions
Showing only changes of commit 21cefa9f8a - Show all commits

View File

@ -59,7 +59,7 @@ fn main() {
println!("Loss: {}\n", history.scaled_loss.last().unwrap());
// find the kaleidocycle's twist motion
let up = DVector::from_column_slice(&[0.0, 0.0, 1.0, 0.0, 0.0]);
let up = DVector::from_column_slice(&[0.0, 0.0, 1.0, 0.0]);
let down = -&up;
let twist_motion: DMatrix<_> = (0..N_POINTS).step_by(4).flat_map(
|n| [

View File

@ -346,7 +346,7 @@ pub fn Display() -> View {
Vector3::zeros()
};
time_step * DVector::from_column_slice(
&[u[0], u[1], u[2], SHRINKING_SPEED * shrink, 0.0]
&[u[0], u[1], u[2], SHRINKING_SPEED * shrink]
)
};
assembly_for_raf.deform(

View File

@ -107,13 +107,14 @@ impl ConfigSubspace {
// space for `assembly_dim` elements. we consider an eigenvector to be part
// of the kernel if its eigenvalue is smaller than the constant `THRESHOLD`
fn symmetric_kernel(a: DMatrix<f64>, proj_to_std: DMatrix<f64>, assembly_dim: usize) -> ConfigSubspace {
// find a basis for the kernel, expressed in the standard coordinates
const ELEMENT_DIM: usize = 5;
const THRESHOLD: f64 = 1.0e-4;
let eig = SymmetricEigen::new(a);
// find a basis for the kernel. the basis is expressed in the projection
// coordinates, and it's orthonormal with respect to the projection
// inner product
const THRESHOLD: f64 = 0.1;
let eig = SymmetricEigen::new(proj_to_std.tr_mul(&a) * &proj_to_std);
let eig_vecs = eig.eigenvectors.column_iter();
let eig_pairs = eig.eigenvalues.iter().zip(eig_vecs);
let basis_std = DMatrix::from_columns(
let basis_proj = DMatrix::from_columns(
eig_pairs.filter_map(
|(λ, v)| (λ.abs() < THRESHOLD).then_some(v)
).collect::<Vec<_>>().as_slice()
@ -126,29 +127,27 @@ impl ConfigSubspace {
format!("Eigenvalues used to find kernel:{}", eig.eigenvalues)
));
// express the basis in the projection coordinates
let basis_proj = proj_to_std.clone().qr().solve(&basis_std).unwrap();
// orthonormalize the basis with respect to the projection inner product
let basis_proj_orth = basis_proj.qr().q();
let basis_std_orth = proj_to_std * &basis_proj_orth;
// express the basis in the standard coordinates
let basis_std = proj_to_std * &basis_proj;
// print the projection basis in projection coordinates
#[cfg(all(target_family = "wasm", target_os = "unknown"))]
console::log_1(&JsValue::from(
format!("Basis in projection coordinates:{}", basis_proj_orth)
format!("Basis in projection coordinates:{}", basis_proj)
));
const ELEMENT_DIM: usize = 5;
const UNIFORM_DIM: usize = 4;
ConfigSubspace {
assembly_dim: assembly_dim,
basis_std: basis_std_orth.column_iter().map(
basis_std: basis_std.column_iter().map(
|v| Into::<DMatrix<f64>>::into(
v.reshape_generic(Dyn(ELEMENT_DIM), Dyn(assembly_dim))
)
).collect(),
basis_proj: basis_proj_orth.column_iter().map(
basis_proj: basis_proj.column_iter().map(
|v| Into::<DMatrix<f64>>::into(
v.reshape_generic(Dyn(ELEMENT_DIM), Dyn(assembly_dim))
v.reshape_generic(Dyn(UNIFORM_DIM), Dyn(assembly_dim))
)
).collect()
}
@ -247,26 +246,25 @@ fn basis_matrix(index: (usize, usize), nrows: usize, ncols: usize) -> DMatrix<f6
// normalization variety
pub fn local_unif_to_std(v: DVectorView<f64>) -> DMatrix<f64> {
const ELEMENT_DIM: usize = 5;
const UNIFORM_DIM: usize = 4;
let curv = 2.0*v[3];
if v.dot(&(&*Q * v)) < 0.5 {
// `v` represents a point. the normalization condition says that the
// curvature component of `v` is 1/2
DMatrix::from_column_slice(ELEMENT_DIM, ELEMENT_DIM, &[
DMatrix::from_column_slice(ELEMENT_DIM, UNIFORM_DIM, &[
curv, 0.0, 0.0, 0.0, v[0],
0.0, curv, 0.0, 0.0, v[1],
0.0, 0.0, curv, 0.0, v[2],
v[0], v[1], v[2], v[3], v[4],
0.0, 0.0, 0.0, 0.0, 1.0
])
} else {
// `v` represents a sphere. the normalization condition says that the
// Lorentz product of `v` with itself is 1
DMatrix::from_column_slice(ELEMENT_DIM, ELEMENT_DIM, &[
DMatrix::from_column_slice(ELEMENT_DIM, UNIFORM_DIM, &[
curv, 0.0, 0.0, 0.0, v[0],
0.0, curv, 0.0, 0.0, v[1],
0.0, 0.0, curv, 0.0, v[2],
curv*v[0], curv*v[1], curv*v[2], curv*v[3], curv*v[4] + 1.0,
v[0], v[1], v[2], v[3], v[4]
curv*v[0], curv*v[1], curv*v[2], curv*v[3], curv*v[4] + 1.0
])
}
}
@ -401,11 +399,13 @@ pub fn realize_gram(
let success = state.loss < tol;
let tangent = if success {
// express the uniform basis in the standard basis
let mut unif_to_std = DMatrix::<f64>::zeros(total_dim, total_dim);
const UNIFORM_DIM: usize = 4;
let total_dim_unif = UNIFORM_DIM * assembly_dim;
let mut unif_to_std = DMatrix::<f64>::zeros(total_dim, total_dim_unif);
for n in 0..assembly_dim {
let block_start = element_dim * n;
let block_start = (element_dim * n, UNIFORM_DIM * n);
unif_to_std
.view_mut((block_start, block_start), (element_dim, element_dim))
.view_mut(block_start, (element_dim, UNIFORM_DIM))
.copy_from(&local_unif_to_std(state.config.column(n)));
}