WIP: Switch to Euclidean-invariant projection onto tangent space of solution variety #34
@ -59,7 +59,7 @@ fn main() {
|
|||||||
println!("Loss: {}\n", history.scaled_loss.last().unwrap());
|
println!("Loss: {}\n", history.scaled_loss.last().unwrap());
|
||||||
|
|
||||||
// find the kaleidocycle's twist motion
|
// find the kaleidocycle's twist motion
|
||||||
let up = DVector::from_column_slice(&[0.0, 0.0, 1.0, 0.0, 0.0]);
|
let up = DVector::from_column_slice(&[0.0, 0.0, 1.0, 0.0]);
|
||||||
let down = -&up;
|
let down = -&up;
|
||||||
let twist_motion: DMatrix<_> = (0..N_POINTS).step_by(4).flat_map(
|
let twist_motion: DMatrix<_> = (0..N_POINTS).step_by(4).flat_map(
|
||||||
|n| [
|
|n| [
|
||||||
|
@ -346,7 +346,7 @@ pub fn Display() -> View {
|
|||||||
Vector3::zeros()
|
Vector3::zeros()
|
||||||
};
|
};
|
||||||
time_step * DVector::from_column_slice(
|
time_step * DVector::from_column_slice(
|
||||||
&[u[0], u[1], u[2], SHRINKING_SPEED * shrink, 0.0]
|
&[u[0], u[1], u[2], SHRINKING_SPEED * shrink]
|
||||||
)
|
)
|
||||||
};
|
};
|
||||||
assembly_for_raf.deform(
|
assembly_for_raf.deform(
|
||||||
|
@ -107,13 +107,14 @@ impl ConfigSubspace {
|
|||||||
// space for `assembly_dim` elements. we consider an eigenvector to be part
|
// space for `assembly_dim` elements. we consider an eigenvector to be part
|
||||||
// of the kernel if its eigenvalue is smaller than the constant `THRESHOLD`
|
// of the kernel if its eigenvalue is smaller than the constant `THRESHOLD`
|
||||||
fn symmetric_kernel(a: DMatrix<f64>, proj_to_std: DMatrix<f64>, assembly_dim: usize) -> ConfigSubspace {
|
fn symmetric_kernel(a: DMatrix<f64>, proj_to_std: DMatrix<f64>, assembly_dim: usize) -> ConfigSubspace {
|
||||||
// find a basis for the kernel, expressed in the standard coordinates
|
// find a basis for the kernel. the basis is expressed in the projection
|
||||||
const ELEMENT_DIM: usize = 5;
|
// coordinates, and it's orthonormal with respect to the projection
|
||||||
const THRESHOLD: f64 = 1.0e-4;
|
// inner product
|
||||||
let eig = SymmetricEigen::new(a);
|
const THRESHOLD: f64 = 0.1;
|
||||||
|
let eig = SymmetricEigen::new(proj_to_std.tr_mul(&a) * &proj_to_std);
|
||||||
let eig_vecs = eig.eigenvectors.column_iter();
|
let eig_vecs = eig.eigenvectors.column_iter();
|
||||||
let eig_pairs = eig.eigenvalues.iter().zip(eig_vecs);
|
let eig_pairs = eig.eigenvalues.iter().zip(eig_vecs);
|
||||||
let basis_std = DMatrix::from_columns(
|
let basis_proj = DMatrix::from_columns(
|
||||||
eig_pairs.filter_map(
|
eig_pairs.filter_map(
|
||||||
|(λ, v)| (λ.abs() < THRESHOLD).then_some(v)
|
|(λ, v)| (λ.abs() < THRESHOLD).then_some(v)
|
||||||
).collect::<Vec<_>>().as_slice()
|
).collect::<Vec<_>>().as_slice()
|
||||||
@ -126,29 +127,27 @@ impl ConfigSubspace {
|
|||||||
format!("Eigenvalues used to find kernel:{}", eig.eigenvalues)
|
format!("Eigenvalues used to find kernel:{}", eig.eigenvalues)
|
||||||
));
|
));
|
||||||
|
|
||||||
// express the basis in the projection coordinates
|
// express the basis in the standard coordinates
|
||||||
let basis_proj = proj_to_std.clone().qr().solve(&basis_std).unwrap();
|
let basis_std = proj_to_std * &basis_proj;
|
||||||
|
|
||||||
// orthonormalize the basis with respect to the projection inner product
|
|
||||||
let basis_proj_orth = basis_proj.qr().q();
|
|
||||||
let basis_std_orth = proj_to_std * &basis_proj_orth;
|
|
||||||
|
|
||||||
// print the projection basis in projection coordinates
|
// print the projection basis in projection coordinates
|
||||||
#[cfg(all(target_family = "wasm", target_os = "unknown"))]
|
#[cfg(all(target_family = "wasm", target_os = "unknown"))]
|
||||||
console::log_1(&JsValue::from(
|
console::log_1(&JsValue::from(
|
||||||
format!("Basis in projection coordinates:{}", basis_proj_orth)
|
format!("Basis in projection coordinates:{}", basis_proj)
|
||||||
));
|
));
|
||||||
|
|
||||||
|
const ELEMENT_DIM: usize = 5;
|
||||||
|
const UNIFORM_DIM: usize = 4;
|
||||||
ConfigSubspace {
|
ConfigSubspace {
|
||||||
assembly_dim: assembly_dim,
|
assembly_dim: assembly_dim,
|
||||||
basis_std: basis_std_orth.column_iter().map(
|
basis_std: basis_std.column_iter().map(
|
||||||
|v| Into::<DMatrix<f64>>::into(
|
|v| Into::<DMatrix<f64>>::into(
|
||||||
v.reshape_generic(Dyn(ELEMENT_DIM), Dyn(assembly_dim))
|
v.reshape_generic(Dyn(ELEMENT_DIM), Dyn(assembly_dim))
|
||||||
)
|
)
|
||||||
).collect(),
|
).collect(),
|
||||||
basis_proj: basis_proj_orth.column_iter().map(
|
basis_proj: basis_proj.column_iter().map(
|
||||||
|v| Into::<DMatrix<f64>>::into(
|
|v| Into::<DMatrix<f64>>::into(
|
||||||
v.reshape_generic(Dyn(ELEMENT_DIM), Dyn(assembly_dim))
|
v.reshape_generic(Dyn(UNIFORM_DIM), Dyn(assembly_dim))
|
||||||
)
|
)
|
||||||
).collect()
|
).collect()
|
||||||
}
|
}
|
||||||
@ -247,26 +246,25 @@ fn basis_matrix(index: (usize, usize), nrows: usize, ncols: usize) -> DMatrix<f6
|
|||||||
// normalization variety
|
// normalization variety
|
||||||
pub fn local_unif_to_std(v: DVectorView<f64>) -> DMatrix<f64> {
|
pub fn local_unif_to_std(v: DVectorView<f64>) -> DMatrix<f64> {
|
||||||
const ELEMENT_DIM: usize = 5;
|
const ELEMENT_DIM: usize = 5;
|
||||||
|
const UNIFORM_DIM: usize = 4;
|
||||||
let curv = 2.0*v[3];
|
let curv = 2.0*v[3];
|
||||||
if v.dot(&(&*Q * v)) < 0.5 {
|
if v.dot(&(&*Q * v)) < 0.5 {
|
||||||
// `v` represents a point. the normalization condition says that the
|
// `v` represents a point. the normalization condition says that the
|
||||||
// curvature component of `v` is 1/2
|
// curvature component of `v` is 1/2
|
||||||
DMatrix::from_column_slice(ELEMENT_DIM, ELEMENT_DIM, &[
|
DMatrix::from_column_slice(ELEMENT_DIM, UNIFORM_DIM, &[
|
||||||
curv, 0.0, 0.0, 0.0, v[0],
|
curv, 0.0, 0.0, 0.0, v[0],
|
||||||
0.0, curv, 0.0, 0.0, v[1],
|
0.0, curv, 0.0, 0.0, v[1],
|
||||||
0.0, 0.0, curv, 0.0, v[2],
|
0.0, 0.0, curv, 0.0, v[2],
|
||||||
v[0], v[1], v[2], v[3], v[4],
|
|
||||||
0.0, 0.0, 0.0, 0.0, 1.0
|
0.0, 0.0, 0.0, 0.0, 1.0
|
||||||
])
|
])
|
||||||
} else {
|
} else {
|
||||||
// `v` represents a sphere. the normalization condition says that the
|
// `v` represents a sphere. the normalization condition says that the
|
||||||
// Lorentz product of `v` with itself is 1
|
// Lorentz product of `v` with itself is 1
|
||||||
DMatrix::from_column_slice(ELEMENT_DIM, ELEMENT_DIM, &[
|
DMatrix::from_column_slice(ELEMENT_DIM, UNIFORM_DIM, &[
|
||||||
curv, 0.0, 0.0, 0.0, v[0],
|
curv, 0.0, 0.0, 0.0, v[0],
|
||||||
0.0, curv, 0.0, 0.0, v[1],
|
0.0, curv, 0.0, 0.0, v[1],
|
||||||
0.0, 0.0, curv, 0.0, v[2],
|
0.0, 0.0, curv, 0.0, v[2],
|
||||||
curv*v[0], curv*v[1], curv*v[2], curv*v[3], curv*v[4] + 1.0,
|
curv*v[0], curv*v[1], curv*v[2], curv*v[3], curv*v[4] + 1.0
|
||||||
v[0], v[1], v[2], v[3], v[4]
|
|
||||||
])
|
])
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
@ -401,11 +399,13 @@ pub fn realize_gram(
|
|||||||
let success = state.loss < tol;
|
let success = state.loss < tol;
|
||||||
let tangent = if success {
|
let tangent = if success {
|
||||||
// express the uniform basis in the standard basis
|
// express the uniform basis in the standard basis
|
||||||
let mut unif_to_std = DMatrix::<f64>::zeros(total_dim, total_dim);
|
const UNIFORM_DIM: usize = 4;
|
||||||
|
let total_dim_unif = UNIFORM_DIM * assembly_dim;
|
||||||
|
let mut unif_to_std = DMatrix::<f64>::zeros(total_dim, total_dim_unif);
|
||||||
for n in 0..assembly_dim {
|
for n in 0..assembly_dim {
|
||||||
let block_start = element_dim * n;
|
let block_start = (element_dim * n, UNIFORM_DIM * n);
|
||||||
unif_to_std
|
unif_to_std
|
||||||
.view_mut((block_start, block_start), (element_dim, element_dim))
|
.view_mut(block_start, (element_dim, UNIFORM_DIM))
|
||||||
.copy_from(&local_unif_to_std(state.config.column(n)));
|
.copy_from(&local_unif_to_std(state.config.column(n)));
|
||||||
}
|
}
|
||||||
|
|
||||||
|
Loading…
Reference in New Issue
Block a user