WIP: Clean up the outline view #16

Closed
Vectornaut wants to merge 29 commits from outline-cleanup into main
3 changed files with 328 additions and 1 deletions
Showing only changes of commit 9fe03264ab - Show all commits

View File

@ -10,6 +10,7 @@ default = ["console_error_panic_hook"]
[dependencies] [dependencies]
itertools = "0.13.0" itertools = "0.13.0"
js-sys = "0.3.70" js-sys = "0.3.70"
lazy_static = "1.5.0"
nalgebra = "0.33.0" nalgebra = "0.33.0"
rustc-hash = "2.0.0" rustc-hash = "2.0.0"
slab = "0.4.9" slab = "0.4.9"

7
app-proto/run-examples Executable file
View File

@ -0,0 +1,7 @@
# based on "Enabling print statements in Cargo tests", by Jon Almeida
#
# https://jonalmeida.com/posts/2015/01/23/print-cargo/
#
cargo test -- --nocapture engine::tests::three_spheres_example
cargo test -- --nocapture engine::tests::point_on_sphere_example

View File

@ -1,4 +1,11 @@
use nalgebra::DVector; use lazy_static::lazy_static;
use nalgebra::{Const, DMatrix, DVector, Dyn};
// --- elements ---
pub fn point(x: f64, y: f64, z: f64) -> DVector<f64> {
DVector::from_column_slice(&[x, y, z, 0.5, 0.5*(x*x + y*y + z*z)])
}
// the sphere with the given center and radius, with inward-pointing normals // the sphere with the given center and radius, with inward-pointing normals
pub fn sphere(center_x: f64, center_y: f64, center_z: f64, radius: f64) -> DVector<f64> { pub fn sphere(center_x: f64, center_y: f64, center_z: f64, radius: f64) -> DVector<f64> {
@ -24,4 +31,316 @@ pub fn sphere_with_offset(dir_x: f64, dir_y: f64, dir_z: f64, off: f64, curv: f6
0.5 * curv, 0.5 * curv,
off * (1.0 + 0.5 * off * curv) off * (1.0 + 0.5 * off * curv)
]) ])
}
// --- partial matrices ---
struct MatrixEntry {
index: (usize, usize),
val: f64
}
struct PartialMatrix(Vec<MatrixEntry>);
impl PartialMatrix {
fn proj(&self, a: &DMatrix<f64>) -> DMatrix<f64> {
let mut result = DMatrix::<f64>::zeros(a.nrows(), a.ncols());
let PartialMatrix(entries) = self;
for ent in entries {
result[ent.index] = a[ent.index];
}
result
}
fn sub_proj(&self, rhs: &DMatrix<f64>) -> DMatrix<f64> {
let mut result = DMatrix::<f64>::zeros(rhs.nrows(), rhs.ncols());
let PartialMatrix(entries) = self;
for ent in entries {
result[ent.index] = ent.val - rhs[ent.index];
}
result
}
}
// --- gram matrix realization ---
// the Lorentz form
lazy_static! {
static ref Q: DMatrix<f64> = DMatrix::from_row_slice(5, 5, &[
1.0, 0.0, 0.0, 0.0, 0.0,
0.0, 1.0, 0.0, 0.0, 0.0,
0.0, 0.0, 1.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, -2.0,
0.0, 0.0, 0.0, -2.0, 0.0
]);
}
struct SearchState {
config: DMatrix<f64>,
err_proj: DMatrix<f64>,
loss: f64
}
impl SearchState {
fn from_config(gram: &PartialMatrix, config: DMatrix<f64>) -> SearchState {
let err_proj = gram.sub_proj(&(config.tr_mul(&*Q) * &config));
let loss = err_proj.norm_squared();
SearchState {
config: config,
err_proj: err_proj,
loss: loss
}
}
}
fn basis_matrix(index: (usize, usize), nrows: usize, ncols: usize) -> DMatrix<f64> {
let mut result = DMatrix::<f64>::zeros(nrows, ncols);
result[index] = 1.0;
result
}
// use backtracking line search to find a better configuration
fn seek_better_config(
gram: &PartialMatrix,
state: &SearchState,
base_step: &DMatrix<f64>,
base_target_improvement: f64,
min_efficiency: f64,
backoff: f64,
max_backoff_steps: i32
) -> Option<SearchState> {
let mut rate = 1.0;
for _ in 0..max_backoff_steps {
let trial_config = &state.config + rate * base_step;
let trial_state = SearchState::from_config(gram, trial_config);
let improvement = state.loss - trial_state.loss;
if improvement >= min_efficiency * rate * base_target_improvement {
return Some(trial_state);
}
rate *= backoff;
}
None
}
// seek a matrix `config` for which `config' * Q * config` matches the partial
// matrix `gram`. use gradient descent starting from `guess`
fn realize_gram(
gram: &PartialMatrix,
guess: DMatrix<f64>,
frozen: &[(usize, usize)],
scaled_tol: f64,
min_efficiency: f64,
backoff: f64,
reg_scale: f64,
max_descent_steps: i32,
max_backoff_steps: i32
) -> (DMatrix<f64>, bool) {
// find the dimension of the search space
let element_dim = guess.nrows();
let assembly_dim = guess.ncols();
let total_dim = element_dim * assembly_dim;
// scale the tolerance
let scale_adjustment = ((guess.ncols() - frozen.len()) as f64).sqrt();
let tol = scale_adjustment * scaled_tol;
// convert the frozen indices to stacked format
let frozen_stacked: Vec<usize> = frozen.into_iter().map(
|index| index.1*element_dim + index.0
).collect();
// use Newton's method with backtracking and gradient descent backup
let mut state = SearchState::from_config(gram, guess);
for _ in 0..max_descent_steps {
// stop if the loss is tolerably low
println!("loss: {}", state.loss);
/*println!("projected error: {}", state.err_proj);*/
if state.loss < tol { break; }
// find the negative gradient of the loss function
let neg_grad = 4.0 * &*Q * &state.config * &state.err_proj;
let mut neg_grad_stacked = neg_grad.clone().reshape_generic(Dyn(total_dim), Const::<1>);
// find the negative Hessian of the loss function
let mut hess_cols = Vec::<DVector<f64>>::with_capacity(total_dim);
for col in 0..assembly_dim {
for row in 0..element_dim {
let index = (row, col);
let basis_mat = basis_matrix(index, element_dim, assembly_dim);
let neg_d_err =
basis_mat.tr_mul(&*Q) * &state.config
+ state.config.tr_mul(&*Q) * &basis_mat;
let neg_d_err_proj = gram.proj(&neg_d_err);
let deriv_grad = 4.0 * &*Q * (
-&basis_mat * &state.err_proj
+ &state.config * &neg_d_err_proj
);
hess_cols.push(deriv_grad.reshape_generic(Dyn(total_dim), Const::<1>));
}
}
let mut hess = DMatrix::from_columns(hess_cols.as_slice());
// regularize the Hessian
let min_eigval = hess.symmetric_eigenvalues().min();
if min_eigval <= 0.0 {
hess -= reg_scale * min_eigval * DMatrix::identity(total_dim, total_dim);
}
// project the negative gradient and negative Hessian onto the
// orthogonal complement of the frozen subspace
let zero_col = DVector::zeros(total_dim);
let zero_row = zero_col.transpose();
for &k in &frozen_stacked {
neg_grad_stacked[k] = 0.0;
hess.set_row(k, &zero_row);
hess.set_column(k, &zero_col);
hess[(k, k)] = 1.0;
}
// compute the Newton step
let base_step_stacked = hess.cholesky().unwrap().solve(&neg_grad_stacked);
let base_step = base_step_stacked.reshape_generic(Dyn(element_dim), Dyn(assembly_dim));
// use backtracking line search to find a better configuration
match seek_better_config(
gram, &state, &base_step, neg_grad.dot(&base_step),
min_efficiency, backoff, max_backoff_steps
) {
Some(better_state) => state = better_state,
None => return (state.config, false)
};
}
(state.config, state.loss < tol)
}
// --- tests ---
#[cfg(test)]
mod tests {
use std::f64;
use super::*;
#[test]
fn sub_proj_test() {
let target = PartialMatrix(vec![
MatrixEntry { index: (0, 0), val: 19.0 },
MatrixEntry { index: (0, 2), val: 39.0 },
MatrixEntry { index: (1, 1), val: 59.0 },
MatrixEntry { index: (1, 2), val: 69.0 }
]);
let attempt = DMatrix::<f64>::from_row_slice(2, 3, &[
1.0, 2.0, 3.0,
4.0, 5.0, 6.0
]);
let expected_result = DMatrix::<f64>::from_row_slice(2, 3, &[
18.0, 0.0, 36.0,
0.0, 54.0, 63.0
]);
assert_eq!(target.sub_proj(&attempt), expected_result);
}
#[test]
fn zero_loss_test() {
let gram = PartialMatrix({
let mut entries = Vec::<MatrixEntry>::new();
for j in 0..3 {
for k in 0..3 {
entries.push(MatrixEntry {
index: (j, k),
val: if j == k { 1.0 } else { -1.0 }
});
}
}
entries
});
let config = {
let a: f64 = 0.75_f64.sqrt();
DMatrix::from_columns(&[
sphere(1.0, 0.0, 0.0, a),
sphere(-0.5, a, 0.0, a),
sphere(-0.5, -a, 0.0, a)
])
};
let state = SearchState::from_config(&gram, config);
assert!(state.loss.abs() < f64::EPSILON);
}
// --- process inspection examples ---
// these tests are meant for human inspection, not automated use. run them
// one at a time in `--nocapture` mode and read through the results and
// optimization histories that they print out. the `run-examples` script
// will run all of them
#[test]
fn three_spheres_example() {
let gram = PartialMatrix({
let mut entries = Vec::<MatrixEntry>::new();
for j in 0..3 {
for k in 0..3 {
entries.push(MatrixEntry {
index: (j, k),
val: if j == k { 1.0 } else { -1.0 }
});
}
}
entries
});
let guess = {
let a: f64 = 0.75_f64.sqrt();
DMatrix::from_columns(&[
sphere(1.0, 0.0, 0.0, 1.0),
sphere(-0.5, a, 0.0, 1.0),
sphere(-0.5, -a, 0.0, 1.0)
])
};
println!();
let (config, success) = realize_gram(
&gram, guess, &[],
1.0e-12, 0.5, 0.9, 1.1, 200, 110
);
print!("\nCompleted Gram matrix:{}", config.tr_mul(&*Q) * &config);
let final_state = SearchState::from_config(&gram, config);
if success {
println!("Target accuracy achieved!");
} else {
println!("Failed to reach target accuracy");
}
println!("Loss: {}", final_state.loss);
}
#[test]
fn point_on_sphere_example() {
let gram = PartialMatrix({
let mut entries = Vec::<MatrixEntry>::new();
for j in 0..2 {
for k in 0..2 {
entries.push(MatrixEntry {
index: (j, k),
val: if (j, k) == (1, 1) { 1.0 } else { 0.0 }
});
}
}
entries
});
let guess = DMatrix::from_columns(&[
point(0.0, 0.0, 2.0),
sphere(0.0, 0.0, 0.0, 1.0)
]);
println!();
let (config, success) = realize_gram(
&gram, guess, &[(3, 0)],
1.0e-12, 0.5, 0.9, 1.1, 200, 110
);
print!("\nCompleted Gram matrix:{}", config.tr_mul(&*Q) * &config);
print!("Configuration:{}", config);
let final_state = SearchState::from_config(&gram, config);
if success {
println!("Target accuracy achieved!");
} else {
println!("Failed to reach target accuracy");
}
println!("Loss: {}", final_state.loss);
}
} }