WIP: Clean up the outline view #16

Closed
Vectornaut wants to merge 29 commits from outline-cleanup into main
4 changed files with 159 additions and 7 deletions
Showing only changes of commit 16df161fe7 - Show all commits

View File

@ -8,7 +8,8 @@ using Optim
export export
rand_on_shell, Q, DescentHistory, rand_on_shell, Q, DescentHistory,
realize_gram_gradient, realize_gram_newton, realize_gram_optim, realize_gram realize_gram_gradient, realize_gram_newton, realize_gram_optim,
realize_gram_alt_proj, realize_gram
# === guessing === # === guessing ===
@ -143,7 +144,7 @@ function realize_gram_gradient(
break break
end end
# find negative gradient of loss function # find the negative gradient of the loss function
neg_grad = 4*Q*L*Δ_proj neg_grad = 4*Q*L*Δ_proj
slope = norm(neg_grad) slope = norm(neg_grad)
dir = neg_grad / slope dir = neg_grad / slope
@ -232,7 +233,7 @@ function realize_gram_newton(
break break
end end
# find the negative gradient of loss function # find the negative gradient of the loss function
neg_grad = 4*Q*L*Δ_proj neg_grad = 4*Q*L*Δ_proj
# find the negative Hessian of the loss function # find the negative Hessian of the loss function
@ -313,6 +314,130 @@ function realize_gram_optim(
) )
end end
# seek a matrix `L` for which `L'QL` matches the sparse matrix `gram` at every
# explicit entry of `gram`. use gradient descent starting from `guess`, with an
# alternate technique for finding the projected base step from the unprojected
# Hessian
function realize_gram_alt_proj(
gram::SparseMatrixCSC{T, <:Any},
guess::Matrix{T},
frozen = CartesianIndex[];
scaled_tol = 1e-30,
min_efficiency = 0.5,
init_rate = 1.0,
backoff = 0.9,
reg_scale = 1.1,
max_descent_steps = 200,
max_backoff_steps = 110
) where T <: Number
# start history
history = DescentHistory{T}()
# find the dimension of the search space
dims = size(guess)
element_dim, construction_dim = dims
total_dim = element_dim * construction_dim
# list the constrained entries of the gram matrix
J, K, _ = findnz(gram)
constrained = zip(J, K)
# scale the tolerance
scale_adjustment = sqrt(T(length(constrained)))
tol = scale_adjustment * scaled_tol
# convert the frozen indices to stacked format
frozen_stacked = [(index[2]-1)*element_dim + index[1] for index in frozen]
# initialize variables
grad_rate = init_rate
L = copy(guess)
# use Newton's method with backtracking and gradient descent backup
Δ_proj = proj_diff(gram, L'*Q*L)
loss = dot(Δ_proj, Δ_proj)
for step in 1:max_descent_steps
# stop if the loss is tolerably low
if loss < tol
break
end
# find the negative gradient of the loss function
neg_grad = 4*Q*L*Δ_proj
# find the negative Hessian of the loss function
hess = Matrix{T}(undef, total_dim, total_dim)
indices = [(j, k) for k in 1:construction_dim for j in 1:element_dim]
for (j, k) in indices
basis_mat = basis_matrix(T, j, k, dims)
neg_dΔ = basis_mat'*Q*L + L'*Q*basis_mat
neg_dΔ_proj = proj_to_entries(neg_dΔ, constrained)
deriv_grad = 4*Q*(-basis_mat*Δ_proj + L*neg_dΔ_proj)
hess[:, (k-1)*element_dim + j] = reshape(deriv_grad, total_dim)
end
hess_sym = Hermitian(hess)
push!(history.hess, hess_sym)
# regularize the Hessian
min_eigval = minimum(eigvals(hess_sym))
push!(history.positive, min_eigval > 0)
if min_eigval <= 0
hess -= reg_scale * min_eigval * I
end
# compute the Newton step
neg_grad_stacked = reshape(neg_grad, total_dim)
for k in frozen_stacked
neg_grad_stacked[k] = 0
hess[k, :] .= 0
hess[:, k] .= 0
hess[k, k] = 1
end
base_step_stacked = Hermitian(hess) \ neg_grad_stacked
base_step = reshape(base_step_stacked, dims)
push!(history.base_step, base_step)
# store the current position, loss, and slope
L_last = L
loss_last = loss
push!(history.scaled_loss, loss / scale_adjustment)
push!(history.neg_grad, neg_grad)
push!(history.slope, norm(neg_grad))
# find a good step size using backtracking line search
push!(history.stepsize, 0)
push!(history.backoff_steps, max_backoff_steps)
empty!(history.last_line_L)
empty!(history.last_line_loss)
rate = one(T)
step_success = false
for backoff_steps in 0:max_backoff_steps
history.stepsize[end] = rate
L = L_last + rate * base_step
Δ_proj = proj_diff(gram, L'*Q*L)
loss = dot(Δ_proj, Δ_proj)
improvement = loss_last - loss
push!(history.last_line_L, L)
push!(history.last_line_loss, loss / scale_adjustment)
if improvement >= min_efficiency * rate * dot(neg_grad, base_step)
history.backoff_steps[end] = backoff_steps
step_success = true
break
end
rate *= backoff
end
# if we've hit a wall, quit
if !step_success
return L_last, false, history
end
end
# return the factorization and its history
push!(history.scaled_loss, loss / scale_adjustment)
L, loss < tol, history
end
# seek a matrix `L` for which `L'QL` matches the sparse matrix `gram` at every # seek a matrix `L` for which `L'QL` matches the sparse matrix `gram` at every
# explicit entry of `gram`. use gradient descent starting from `guess` # explicit entry of `gram`. use gradient descent starting from `guess`
function realize_gram( function realize_gram(
@ -365,7 +490,7 @@ function realize_gram(
break break
end end
# find the negative gradient of loss function # find the negative gradient of the loss function
neg_grad = 4*Q*L*Δ_proj neg_grad = 4*Q*L*Δ_proj
# find the negative Hessian of the loss function # find the negative Hessian of the loss function

View File

@ -75,3 +75,12 @@ if success
println(" ", 1 / L[4,k], " sun") println(" ", 1 / L[4,k], " sun")
end end
end end
# test an alternate technique for finding the projected base step from the
# unprojected Hessian
L_alt, success_alt, history_alt = Engine.realize_gram_alt_proj(gram, guess, frozen)
completed_gram_alt = L_alt'*Engine.Q*L_alt
println("\nDifference in result using alternate projection:\n")
display(completed_gram_alt - completed_gram)
println("\nDifference in steps: ", size(history_alt.scaled_loss, 1) - size(history.scaled_loss, 1))
println("Difference in loss: ", history_alt.scaled_loss[end] - history.scaled_loss[end], "\n")

View File

@ -65,3 +65,12 @@ else
end end
println("Steps: ", size(history.scaled_loss, 1)) println("Steps: ", size(history.scaled_loss, 1))
println("Loss: ", history.scaled_loss[end], "\n") println("Loss: ", history.scaled_loss[end], "\n")
# test an alternate technique for finding the projected base step from the
# unprojected Hessian
L_alt, success_alt, history_alt = Engine.realize_gram_alt_proj(gram, guess, frozen)
completed_gram_alt = L_alt'*Engine.Q*L_alt
println("\nDifference in result using alternate projection:\n")
display(completed_gram_alt - completed_gram)
println("\nDifference in steps: ", size(history_alt.scaled_loss, 1) - size(history.scaled_loss, 1))
println("Difference in loss: ", history_alt.scaled_loss[end] - history.scaled_loss[end], "\n")

View File

@ -94,3 +94,12 @@ if success
radius_ratio = dot(infty, Engine.Q * L[:,5]) / dot(infty, Engine.Q * L[:,6]) radius_ratio = dot(infty, Engine.Q * L[:,5]) / dot(infty, Engine.Q * L[:,6])
println("\nCircumradius / inradius: ", radius_ratio) println("\nCircumradius / inradius: ", radius_ratio)
end end
# test an alternate technique for finding the projected base step from the
# unprojected Hessian
L_alt, success_alt, history_alt = Engine.realize_gram_alt_proj(gram, guess, frozen)
completed_gram_alt = L_alt'*Engine.Q*L_alt
println("\nDifference in result using alternate projection:\n")
display(completed_gram_alt - completed_gram)
println("\nDifference in steps: ", size(history_alt.scaled_loss, 1) - size(history.scaled_loss, 1))
println("Difference in loss: ", history_alt.scaled_loss[end] - history.scaled_loss[end], "\n")