Engine prototype #13

Merged
glen merged 133 commits from engine-proto into main 2024-10-21 03:18:48 +00:00
Showing only changes of commit bd3e3506e5 - Show all commits

View File

@ -7,7 +7,7 @@ These coordinates are of form $I=(c, r, x, y, z)$ where we think of $c$ as the c
| Entity or Relationship | Representation | Comments/questions | | Entity or Relationship | Representation | Comments/questions |
| ------------------------------------------------------------------------------ | ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ | ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ | | ------------------------------------------------------------------------------ | ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ | ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ |
| Sphere s with radius r>0 centered on P = (x,y,z) | $I_s = (1/c, 1/r, x/r, y/r, z/r)$ satisfying $Q(I_s,I_s) = -1$, i.e., $c = r/(\|P\|^2 - r^2)$. | Can also write $I_s = (\|P\|^2/r - r, 1/r, x/r, y/r, z/r)$ -- so there is no trouble if $\|P\| = r$; we just get first coordinate to be 0. | | Sphere s with radius r>0 centered on P = (x,y,z) | $I_s = (1/c, 1/r, x/r, y/r, z/r)$ satisfying $Q(I_s,I_s) = -1$, i.e., $c = r/(\|P\|^2 - r^2)$. | Can also write $I_s = (\|P\|^2/r - r, 1/r, x/r, y/r, z/r)$ -- so there is no trouble if $\|P\| = r$; we just get first coordinate to be 0. |
| Plane p with unit normal $(x,y,z)$ through the (Euclidean) point $(sx,sy,sz)$ | $I_p = (-2s, 0, -x, -y, -z)$ | Note $Q(I_p, I_p)$ is still 1. This plane is at distance $s$ from the origin. | | Plane p with unit normal $(x,y,z)$ through the (Euclidean) point $(sx,sy,sz)$ | $I_p = (-2s, 0, -x, -y, -z)$ | Note $Q(I_p, I_p)$ is still 1. This plane is at distance $s$ from the origin. |
| Point P with Euclidean coordinates (x,y,z) | $I_P = (\|P\|^2, 1, x, y, z)$ | Note $Q(I_P,I_P) = 0$.  Because of this we might choose  some other scaling of the inversive coordinates, say $(\| | | Point P with Euclidean coordinates (x,y,z) | $I_P = (\|P\|^2, 1, x, y, z)$ | Note $Q(I_P,I_P) = 0$.  Because of this we might choose  some other scaling of the inversive coordinates, say $(\| |
| ∞, the "point at infinity" | $I_\infty = (1,0,0,0,0)$ | The only solution to $Q(I,I) = 0$ not covered by the above case. | | ∞, the "point at infinity" | $I_\infty = (1,0,0,0,0)$ | The only solution to $Q(I,I) = 0$ not covered by the above case. |
| P lies on sphere or plane given by I | $Q(I_P, I) = 0$ | | | P lies on sphere or plane given by I | $Q(I_P, I) = 0$ | |