Engine prototype #13
@ -186,16 +186,16 @@ function realize(ctx::Construction{T}) where T
|
||||
# add relations to center, orient, and scale the construction
|
||||
# [to do] the scaling constraint, as written, can be impossible to satisfy
|
||||
# when all of the spheres have to go through the origin
|
||||
##if !isempty(ctx.points)
|
||||
## append!(eqns, [sum(pt.coords[k] for pt in ctx.points) for k in 1:3])
|
||||
##end
|
||||
##if !isempty(ctx.spheres)
|
||||
## append!(eqns, [sum(sph.coords[k] for sph in ctx.spheres) for k in 3:4])
|
||||
##end
|
||||
##n_elts = length(ctx.points) + length(ctx.spheres)
|
||||
##if n_elts > 0
|
||||
## push!(eqns, sum(elt.vec[2] for elt in Iterators.flatten((ctx.points, ctx.spheres))) - n_elts)
|
||||
##end
|
||||
if !isempty(ctx.points)
|
||||
append!(eqns, [sum(pt.coords[k] for pt in ctx.points) for k in 1:3])
|
||||
end
|
||||
if !isempty(ctx.spheres)
|
||||
append!(eqns, [sum(sph.coords[k] for sph in ctx.spheres) for k in 3:4])
|
||||
end
|
||||
n_elts = length(ctx.points) + length(ctx.spheres)
|
||||
if n_elts > 0
|
||||
push!(eqns, sum(elt.vec[2] for elt in Iterators.flatten((ctx.points, ctx.spheres))) - n_elts)
|
||||
end
|
||||
|
||||
(Generic.Ideal(coordring, eqns), eqns)
|
||||
## [test] (nothing, eqns)
|
||||
|
@ -59,13 +59,13 @@ tangencies = [
|
||||
ctx_tan_sph = Engine.Construction{CoeffType}(elements = spheres, relations = tangencies)
|
||||
ideal_tan_sph, eqns_tan_sph = Engine.realize(ctx_tan_sph)
|
||||
##small_eqns_tan_sph = eqns_tan_sph
|
||||
small_eqns_tan_sph = [
|
||||
eqns_tan_sph;
|
||||
spheres[2].coords - [1, 0, 0, 0, 1];
|
||||
spheres[3].coords - [1, 0, 0, 0, -1];
|
||||
]
|
||||
small_ideal_tan_sph = Generic.Ideal(base_ring(ideal_tan_sph), small_eqns_tan_sph)
|
||||
freedom = Engine.dimension(small_ideal_tan_sph)
|
||||
##small_eqns_tan_sph = [
|
||||
## eqns_tan_sph;
|
||||
## spheres[2].coords - [1, 0, 0, 0, 1];
|
||||
## spheres[3].coords - [1, 0, 0, 0, -1];
|
||||
##]
|
||||
##small_ideal_tan_sph = Generic.Ideal(base_ring(ideal_tan_sph), small_eqns_tan_sph)
|
||||
freedom = Engine.dimension(ideal_tan_sph)
|
||||
println("Three mutually tangent spheres, with two fixed: $freedom degrees of freedom")
|
||||
|
||||
##points = [Engine.Point{CoeffType}() for _ in 1:3]
|
||||
@ -83,11 +83,11 @@ println("Three mutually tangent spheres, with two fixed: $freedom degrees of fre
|
||||
|
||||
# --- test rational cut ---
|
||||
|
||||
coordring = base_ring(small_ideal_tan_sph)
|
||||
coordring = base_ring(ideal_tan_sph)
|
||||
vbls = Variable.(symbols(coordring))
|
||||
|
||||
# test a random witness set
|
||||
system = CompiledSystem(System(small_eqns_tan_sph, variables = vbls))
|
||||
system = CompiledSystem(System(eqns_tan_sph, variables = vbls))
|
||||
norm2 = vec -> real(dot(conj.(vec), vec))
|
||||
rng = MersenneTwister(6071)
|
||||
n_planes = 3
|
||||
|
Loading…
Reference in New Issue
Block a user