Engine prototype #13
@ -23,23 +23,23 @@ using GLMakie
|
||||
|
||||
CoeffType = Rational{Int64}
|
||||
|
||||
a = Engine.Point{CoeffType}()
|
||||
s = Engine.Sphere{CoeffType}()
|
||||
a_on_s = Engine.LiesOn{CoeffType}(a, s)
|
||||
ctx = Engine.Construction{CoeffType}(elements = Set([a]), relations= Set([a_on_s]))
|
||||
##a = Engine.Point{CoeffType}()
|
||||
##s = Engine.Sphere{CoeffType}()
|
||||
##a_on_s = Engine.LiesOn{CoeffType}(a, s)
|
||||
##ctx = Engine.Construction{CoeffType}(elements = Set([a]), relations= Set([a_on_s]))
|
||||
##ideal_a_s = Engine.realize(ctx)
|
||||
##println("A point on a sphere: ", Engine.dimension(ideal_a_s), " degrees of freedom")
|
||||
##println("A point on a sphere: $(Engine.dimension(ideal_a_s)) degrees of freedom")
|
||||
|
||||
b = Engine.Point{CoeffType}()
|
||||
b_on_s = Engine.LiesOn{CoeffType}(b, s)
|
||||
Engine.push!(ctx, b)
|
||||
Engine.push!(ctx, s)
|
||||
Engine.push!(ctx, b_on_s)
|
||||
ideal_ab_s, eqns_ab_s = Engine.realize(ctx)
|
||||
freedom = Engine.dimension(ideal_ab_s)
|
||||
println("Two points on a sphere: ", freedom, " degrees of freedom")
|
||||
##b = Engine.Point{CoeffType}()
|
||||
##b_on_s = Engine.LiesOn{CoeffType}(b, s)
|
||||
##Engine.push!(ctx, b)
|
||||
##Engine.push!(ctx, s)
|
||||
##Engine.push!(ctx, b_on_s)
|
||||
##ideal_ab_s, eqns_ab_s = Engine.realize(ctx)
|
||||
##freedom = Engine.dimension(ideal_ab_s)
|
||||
##println("Two points on a sphere: $freedom degrees of freedom")
|
||||
|
||||
##spheres = [Engine.Sphere{CoeffType}() for _ in 1:3]
|
||||
spheres = [Engine.Sphere{CoeffType}() for _ in 1:3]
|
||||
##tangencies = [
|
||||
## Engine.AlignsWithBy{CoeffType}(
|
||||
## spheres[n],
|
||||
@ -48,31 +48,29 @@ println("Two points on a sphere: ", freedom, " degrees of freedom")
|
||||
## )
|
||||
## for n in 1:3
|
||||
##]
|
||||
##ctx_tan_sph = Engine.Construction{CoeffType}(elements = Set(spheres), relations = Set(tangencies))
|
||||
##ideal_tan_sph = Engine.realize(ctx_tan_sph)
|
||||
##println("Three mutually tangent spheres: ", Engine.dimension(ideal_tan_sph), " degrees of freedom")
|
||||
tangencies = [
|
||||
Engine.AlignsWithBy{CoeffType}(spheres[1], spheres[2], CoeffType(-1)),
|
||||
Engine.AlignsWithBy{CoeffType}(spheres[2], spheres[3], CoeffType(-1//2))
|
||||
]
|
||||
ctx_tan_sph = Engine.Construction{CoeffType}(elements = Set(spheres), relations = Set(tangencies))
|
||||
ideal_tan_sph, eqns_tan_sph = Engine.realize(ctx_tan_sph)
|
||||
freedom = Engine.dimension(ideal_tan_sph)
|
||||
##println("Three mutually tangent spheres: $freedom degrees of freedom")
|
||||
println("Chain of three spheres: $freedom degrees of freedom")
|
||||
|
||||
# --- test rational cut ---
|
||||
|
||||
coordring = base_ring(ideal_ab_s)
|
||||
coordring = base_ring(ideal_tan_sph)
|
||||
vbls = Variable.(symbols(coordring))
|
||||
|
||||
# test a random witness set
|
||||
system = CompiledSystem(System(eqns_ab_s, variables = vbls))
|
||||
sph_z_ind = indexin([sph.coords[5] for sph in ctx.spheres], gens(coordring))
|
||||
println("sphere z variables: ", vbls[sph_z_ind])
|
||||
## [old] trivial_soln = fill(0, length(gens(coordring)))
|
||||
## [old] trivial_soln[sph_z_ind] .= 1
|
||||
## [old] println("trivial solutions: $trivial_soln")
|
||||
system = CompiledSystem(System(eqns_tan_sph, variables = vbls))
|
||||
norm2 = vec -> real(dot(conj.(vec), vec))
|
||||
## [old] is_nontrivial = soln -> norm2(abs.(real.(soln)) - trivial_soln) > 1e-4*length(gens(coordring))
|
||||
Random.seed!(6071)
|
||||
n_planes = 3
|
||||
n_planes = 16
|
||||
samples = []
|
||||
for _ in 1:n_planes
|
||||
real_solns = solution.(Engine.Numerical.real_samples(system, freedom))
|
||||
## [old] nontrivial_solns = filter(is_nontrivial, real_solns)
|
||||
## [old] println("$(length(real_solns) - length(nontrivial_solns)) trivial solutions found")
|
||||
for soln in real_solns
|
||||
if all(norm2(soln - samp) > 1e-4*length(gens(coordring)) for samp in samples)
|
||||
push!(samples, soln)
|
||||
@ -97,7 +95,7 @@ for soln in samples
|
||||
end
|
||||
|
||||
# show a sample solution
|
||||
function show_solution(vals)
|
||||
function show_solution(ctx, vals)
|
||||
# evaluate elements
|
||||
real_vals = real.(vals)
|
||||
disp_points = [Engine.Numerical.evaluate(pt, real_vals) for pt in ctx.points]
|
||||
|
Loading…
Reference in New Issue
Block a user