Engine prototype #13
@ -2,7 +2,10 @@ module Numerical
|
||||
|
||||
using LinearAlgebra
|
||||
using AbstractAlgebra
|
||||
using HomotopyContinuation
|
||||
using HomotopyContinuation:
|
||||
Variable, Expression, AbstractSystem, System, LinearSubspace,
|
||||
nvariables, isreal, witness_set, results
|
||||
import GLMakie
|
||||
using ..Algebraic
|
||||
|
||||
# --- polynomial conversion ---
|
||||
@ -11,7 +14,7 @@ using ..Algebraic
|
||||
# https://github.com/JuliaHomotopyContinuation/HomotopyContinuation.jl/issues/520#issuecomment-1317681521
|
||||
function Base.convert(::Type{Expression}, f::MPolyRingElem)
|
||||
variables = Variable.(symbols(parent(f)))
|
||||
f_data = zip(AbstractAlgebra.coefficients(f), exponent_vectors(f))
|
||||
f_data = zip(coefficients(f), exponent_vectors(f))
|
||||
sum(cf * prod(variables .^ exp_vec) for (cf, exp_vec) in f_data)
|
||||
end
|
||||
|
||||
@ -37,4 +40,13 @@ function real_samples(F::AbstractSystem, dim)
|
||||
filter(isreal, results(witness_set(F, cut)))
|
||||
end
|
||||
|
||||
AbstractAlgebra.evaluate(pt::Point, vals::Vector{<:RingElement}) =
|
||||
GLMakie.Point3f([evaluate(u, vals) for u in pt.coords])
|
||||
|
||||
function AbstractAlgebra.evaluate(sph::Sphere, vals::Vector{<:RingElement})
|
||||
radius = 1 / evaluate(sph.coords[1], vals)
|
||||
center = radius * [evaluate(u, vals) for u in sph.coords[3:end]]
|
||||
GLMakie.Sphere(GLMakie.Point3f(center), radius)
|
||||
end
|
||||
|
||||
end
|
@ -19,6 +19,7 @@ using Distributions
|
||||
using LinearAlgebra
|
||||
using AbstractAlgebra
|
||||
using HomotopyContinuation
|
||||
using GLMakie
|
||||
|
||||
CoeffType = Rational{Int64}
|
||||
|
||||
@ -55,50 +56,31 @@ println("Two points on a sphere: ", freedom, " degrees of freedom")
|
||||
|
||||
coordring = base_ring(ideal_ab_s)
|
||||
vbls = Variable.(symbols(coordring))
|
||||
##cut_system = CompiledSystem(System([eqns_ab_s; cut], variables = vbls))
|
||||
##cut_result = HomotopyContinuation.solve(cut_system)
|
||||
##println("non-singular solutions:")
|
||||
##for soln in solutions(cut_result)
|
||||
## display(soln)
|
||||
##end
|
||||
##println("singular solutions:")
|
||||
##for sing in singular(cut_result)
|
||||
## display(sing.solution)
|
||||
##end
|
||||
|
||||
# test a random witness set
|
||||
system = CompiledSystem(System(eqns_ab_s, variables = vbls))
|
||||
sph_z_ind = indexin([sph.coords[5] for sph in ctx.spheres], gens(coordring))
|
||||
println("sphere z variables: ", vbls[sph_z_ind])
|
||||
trivial_soln = fill(0, length(gens(coordring)))
|
||||
trivial_soln[sph_z_ind] .= 1
|
||||
println("trivial solutions: $trivial_soln")
|
||||
## [old] trivial_soln = fill(0, length(gens(coordring)))
|
||||
## [old] trivial_soln[sph_z_ind] .= 1
|
||||
## [old] println("trivial solutions: $trivial_soln")
|
||||
norm2 = vec -> real(dot(conj.(vec), vec))
|
||||
is_nontrivial = soln -> norm2(abs.(real.(soln)) - trivial_soln) > 1e-4*length(gens(coordring))
|
||||
##max_slope = 5
|
||||
##binom = Binomial(2max_slope, 1/2)
|
||||
## [old] is_nontrivial = soln -> norm2(abs.(real.(soln)) - trivial_soln) > 1e-4*length(gens(coordring))
|
||||
Random.seed!(6071)
|
||||
n_planes = 36
|
||||
for through_trivial in [false, true]
|
||||
samples = []
|
||||
for _ in 1:n_planes
|
||||
n_planes = 3
|
||||
samples = []
|
||||
for _ in 1:n_planes
|
||||
real_solns = solution.(Engine.Numerical.real_samples(system, freedom))
|
||||
nontrivial_solns = filter(is_nontrivial, real_solns)
|
||||
println("$(length(real_solns) - length(nontrivial_solns)) trivial solutions found")
|
||||
for soln in nontrivial_solns
|
||||
## [test] for soln in filter(is_nontrivial, solution.(filter(isreal, results(wtns))))
|
||||
## [old] nontrivial_solns = filter(is_nontrivial, real_solns)
|
||||
## [old] println("$(length(real_solns) - length(nontrivial_solns)) trivial solutions found")
|
||||
for soln in real_solns
|
||||
if all(norm2(soln - samp) > 1e-4*length(gens(coordring)) for samp in samples)
|
||||
push!(samples, soln)
|
||||
end
|
||||
end
|
||||
end
|
||||
if through_trivial
|
||||
println("--- planes through trivial solution ---")
|
||||
else
|
||||
println("--- planes through origin ---")
|
||||
end
|
||||
println("$(length(samples)) sample solutions, not including the trivial one:")
|
||||
for soln in samples
|
||||
end
|
||||
println("$(length(samples)) sample solutions:")
|
||||
for soln in samples
|
||||
## display([vbls round.(soln, digits = 6)]) ## [verbose]
|
||||
k_sq = abs2(soln[1])
|
||||
if abs2(soln[end-2]) > 1e-12
|
||||
@ -112,5 +94,21 @@ for through_trivial in [false, true]
|
||||
sum_sq = sum(soln[[4, 7, 10]] .^ 2)
|
||||
println(" center at origin: r² = $(round(1/k_sq, digits = 6)); x² + y² + z² = $(round(sum_sq, digits = 6))")
|
||||
end
|
||||
end
|
||||
end
|
||||
|
||||
# show a sample solution
|
||||
function show_solution(vals)
|
||||
# evaluate elements
|
||||
real_vals = real.(vals)
|
||||
disp_points = [Engine.Numerical.evaluate(pt, real_vals) for pt in ctx.points]
|
||||
disp_spheres = [Engine.Numerical.evaluate(sph, real_vals) for sph in ctx.spheres]
|
||||
|
||||
# create scene
|
||||
scene = Scene()
|
||||
cam3d!(scene)
|
||||
scatter!(scene, disp_points, color = :green)
|
||||
for sph in disp_spheres
|
||||
mesh!(scene, sph, color = :gray)
|
||||
end
|
||||
scene
|
||||
end
|
Loading…
Reference in New Issue
Block a user