Engine prototype #13
@ -7,6 +7,26 @@ using LinearAlgebra
|
||||
using AbstractAlgebra
|
||||
using Groebner
|
||||
|
||||
# --- commutative algebra ---
|
||||
|
||||
# as of version 0.36.6, AbstractAlgebra only supports ideals in multivariate
|
||||
# polynomial rings when coefficients are integers. in `reduce_gens`, the
|
||||
# `lmnode` constructor requires < to be defined on the coefficients, and the
|
||||
# `reducer_size` heuristic requires `ndigits` to be defined on the coefficients.
|
||||
# this patch for `reducer_size` removes the `ndigits` dependency
|
||||
##function Generic.reducer_size(f::T) where {U <: MPolyRingElem{<:FieldElement}, V, N, T <: Generic.lmnode{U, V, N}}
|
||||
## if f.size != 0.0
|
||||
## return f.size
|
||||
## end
|
||||
## return 0.0 + sum(j^2 for j in 1:length(f.poly))
|
||||
##end
|
||||
|
||||
# as of version 0.36.6, AbstractAlgebra only supports ideals in multivariate
|
||||
# polynomial rings when the coefficients are integers. we use Groebner to extend
|
||||
# support to rationals and to finite fields of prime order
|
||||
Generic.reduce_gens(I::Generic.Ideal{U}) where {T <: FieldElement, U <: MPolyRingElem{T}} =
|
||||
Generic.Ideal{U}(base_ring(I), groebner(gens(I)))
|
||||
|
||||
# --- primitve elements ---
|
||||
|
||||
abstract type Element{T} end
|
||||
@ -23,8 +43,6 @@ mutable struct Point{T} <: Element{T}
|
||||
) where T = new(coords, vec, nothing)
|
||||
end
|
||||
|
||||
##coordnames(_::Point) = [:xₚ, :yₚ, :zₚ]
|
||||
|
||||
function buildvec!(pt::Point)
|
||||
coordring = parent(pt.coords[1])
|
||||
pt.vec = [one(coordring), dot(pt.coords, pt.coords), pt.coords...]
|
||||
@ -43,8 +61,6 @@ mutable struct Sphere{T} <: Element{T}
|
||||
) where T = new(coords, vec, rel)
|
||||
end
|
||||
|
||||
##coordnames(_::Sphere) = [:rₛ, :sₛ, :xₛ, :yₛ, :zₛ]
|
||||
|
||||
function buildvec!(sph::Sphere)
|
||||
coordring = parent(sph.coords[1])
|
||||
sph.vec = sph.coords
|
||||
@ -130,10 +146,6 @@ function realize(ctx::Construction{T}) where T
|
||||
end
|
||||
end
|
||||
|
||||
display(collect(elemenum))
|
||||
display(coordnamelist)
|
||||
println()
|
||||
|
||||
# construct coordinate ring
|
||||
coordring, coordqueue = polynomial_ring(parent_type(T)(), coordnamelist, ordering = :degrevlex)
|
||||
|
||||
@ -150,16 +162,14 @@ function realize(ctx::Construction{T}) where T
|
||||
# construct coordinate vectors
|
||||
for (_, elem) in elemenum
|
||||
buildvec!(elem)
|
||||
display(elem.coords)
|
||||
display(elem.vec)
|
||||
println()
|
||||
end
|
||||
|
||||
# turn relations into equations
|
||||
vcat(
|
||||
eqns = vcat(
|
||||
equation.(ctx.relations),
|
||||
[elem.rel for elem in ctx.elements if !isnothing(elem.rel)]
|
||||
)
|
||||
Generic.Ideal(coordring, eqns)
|
||||
end
|
||||
|
||||
end
|
||||
@ -172,22 +182,23 @@ a = Engine.Point{CoeffType}()
|
||||
s = Engine.Sphere{CoeffType}()
|
||||
a_on_s = Engine.LiesOn{CoeffType}(a, s)
|
||||
ctx = Engine.Construction{CoeffType}(elements = Set([a]), relations= Set([a_on_s]))
|
||||
eqns_a_s = Engine.realize(ctx)
|
||||
ideal_a_s = Engine.realize(ctx)
|
||||
|
||||
b = Engine.Point{CoeffType}()
|
||||
b_on_s = Engine.LiesOn{CoeffType}(b, s)
|
||||
Engine.push!(ctx, b)
|
||||
Engine.push!(ctx, s)
|
||||
Engine.push!(ctx, b_on_s)
|
||||
eqns_ab_s = Engine.realize(ctx)
|
||||
ideal_ab_s = Engine.realize(ctx)
|
||||
|
||||
spheres = [Engine.Sphere{CoeffType}() for _ in 1:3]
|
||||
tangencies = [
|
||||
Engine.AlignsWithBy{CoeffType}(
|
||||
spheres[n],
|
||||
spheres[mod1(n+1, length(spheres))],
|
||||
-1//1
|
||||
CoeffType(-1//1)
|
||||
)
|
||||
for n in 1:3
|
||||
]
|
||||
ctx_chain = Engine.Construction{CoeffType}(elements = Set(spheres), relations = Set(tangencies))
|
||||
ideal_chain = Engine.realize(ctx_chain)
|
Loading…
Reference in New Issue
Block a user