Engine prototype #13

Merged
glen merged 133 commits from engine-proto into main 2024-10-21 03:18:48 +00:00
Showing only changes of commit 6349f298ae - Show all commits

View File

@ -7,6 +7,26 @@ using LinearAlgebra
using AbstractAlgebra using AbstractAlgebra
using Groebner using Groebner
# --- commutative algebra ---
# as of version 0.36.6, AbstractAlgebra only supports ideals in multivariate
# polynomial rings when coefficients are integers. in `reduce_gens`, the
# `lmnode` constructor requires < to be defined on the coefficients, and the
# `reducer_size` heuristic requires `ndigits` to be defined on the coefficients.
# this patch for `reducer_size` removes the `ndigits` dependency
##function Generic.reducer_size(f::T) where {U <: MPolyRingElem{<:FieldElement}, V, N, T <: Generic.lmnode{U, V, N}}
## if f.size != 0.0
## return f.size
## end
## return 0.0 + sum(j^2 for j in 1:length(f.poly))
##end
# as of version 0.36.6, AbstractAlgebra only supports ideals in multivariate
# polynomial rings when the coefficients are integers. we use Groebner to extend
# support to rationals and to finite fields of prime order
Generic.reduce_gens(I::Generic.Ideal{U}) where {T <: FieldElement, U <: MPolyRingElem{T}} =
Generic.Ideal{U}(base_ring(I), groebner(gens(I)))
# --- primitve elements --- # --- primitve elements ---
abstract type Element{T} end abstract type Element{T} end
@ -23,8 +43,6 @@ mutable struct Point{T} <: Element{T}
) where T = new(coords, vec, nothing) ) where T = new(coords, vec, nothing)
end end
##coordnames(_::Point) = [:xₚ, :yₚ, :zₚ]
function buildvec!(pt::Point) function buildvec!(pt::Point)
coordring = parent(pt.coords[1]) coordring = parent(pt.coords[1])
pt.vec = [one(coordring), dot(pt.coords, pt.coords), pt.coords...] pt.vec = [one(coordring), dot(pt.coords, pt.coords), pt.coords...]
@ -43,8 +61,6 @@ mutable struct Sphere{T} <: Element{T}
) where T = new(coords, vec, rel) ) where T = new(coords, vec, rel)
end end
##coordnames(_::Sphere) = [:rₛ, :sₛ, :xₛ, :yₛ, :zₛ]
function buildvec!(sph::Sphere) function buildvec!(sph::Sphere)
coordring = parent(sph.coords[1]) coordring = parent(sph.coords[1])
sph.vec = sph.coords sph.vec = sph.coords
@ -130,10 +146,6 @@ function realize(ctx::Construction{T}) where T
end end
end end
display(collect(elemenum))
display(coordnamelist)
println()
# construct coordinate ring # construct coordinate ring
coordring, coordqueue = polynomial_ring(parent_type(T)(), coordnamelist, ordering = :degrevlex) coordring, coordqueue = polynomial_ring(parent_type(T)(), coordnamelist, ordering = :degrevlex)
@ -150,16 +162,14 @@ function realize(ctx::Construction{T}) where T
# construct coordinate vectors # construct coordinate vectors
for (_, elem) in elemenum for (_, elem) in elemenum
buildvec!(elem) buildvec!(elem)
display(elem.coords)
display(elem.vec)
println()
end end
# turn relations into equations # turn relations into equations
vcat( eqns = vcat(
equation.(ctx.relations), equation.(ctx.relations),
[elem.rel for elem in ctx.elements if !isnothing(elem.rel)] [elem.rel for elem in ctx.elements if !isnothing(elem.rel)]
) )
Generic.Ideal(coordring, eqns)
end end
end end
@ -172,22 +182,23 @@ a = Engine.Point{CoeffType}()
s = Engine.Sphere{CoeffType}() s = Engine.Sphere{CoeffType}()
a_on_s = Engine.LiesOn{CoeffType}(a, s) a_on_s = Engine.LiesOn{CoeffType}(a, s)
ctx = Engine.Construction{CoeffType}(elements = Set([a]), relations= Set([a_on_s])) ctx = Engine.Construction{CoeffType}(elements = Set([a]), relations= Set([a_on_s]))
eqns_a_s = Engine.realize(ctx) ideal_a_s = Engine.realize(ctx)
b = Engine.Point{CoeffType}() b = Engine.Point{CoeffType}()
b_on_s = Engine.LiesOn{CoeffType}(b, s) b_on_s = Engine.LiesOn{CoeffType}(b, s)
Engine.push!(ctx, b) Engine.push!(ctx, b)
Engine.push!(ctx, s) Engine.push!(ctx, s)
Engine.push!(ctx, b_on_s) Engine.push!(ctx, b_on_s)
eqns_ab_s = Engine.realize(ctx) ideal_ab_s = Engine.realize(ctx)
spheres = [Engine.Sphere{CoeffType}() for _ in 1:3] spheres = [Engine.Sphere{CoeffType}() for _ in 1:3]
tangencies = [ tangencies = [
Engine.AlignsWithBy{CoeffType}( Engine.AlignsWithBy{CoeffType}(
spheres[n], spheres[n],
spheres[mod1(n+1, length(spheres))], spheres[mod1(n+1, length(spheres))],
-1//1 CoeffType(-1//1)
) )
for n in 1:3 for n in 1:3
] ]
ctx_chain = Engine.Construction{CoeffType}(elements = Set(spheres), relations = Set(tangencies)) ctx_chain = Engine.Construction{CoeffType}(elements = Set(spheres), relations = Set(tangencies))
ideal_chain = Engine.realize(ctx_chain)