Engine prototype #13
@ -108,11 +108,11 @@ println("\nLoss: ", loss, "\n")
|
||||
|
||||
# === algebraic check ===
|
||||
|
||||
R, gens = polynomial_ring(Generic.Rationals{BigInt}(), ["x", "t₁", "t₂", "t₃"])
|
||||
R, gens = polynomial_ring(AbstractAlgebra.Rationals{BigInt}(), ["x", "t₁", "t₂", "t₃"])
|
||||
x = gens[1]
|
||||
t = gens[2:4]
|
||||
|
||||
S, u = polynomial_ring(Generic.Rationals{BigInt}(), "u")
|
||||
S, u = polynomial_ring(AbstractAlgebra.Rationals{BigInt}(), "u")
|
||||
|
||||
M = matrix_space(R, 7, 7)
|
||||
gram_symb = M(R[
|
||||
|
@ -11,7 +11,7 @@ function printbad(msg)
|
||||
println(" ", msg)
|
||||
end
|
||||
|
||||
F, gens = rational_function_field(Generic.Rationals{BigInt}(), ["a₁", "a₂", "b₁", "b₂", "c₁", "c₂"])
|
||||
F, gens = rational_function_field(AbstractAlgebra.Rationals{BigInt}(), ["a₁", "a₂", "b₁", "b₂", "c₁", "c₂"])
|
||||
a = gens[1:2]
|
||||
b = gens[3:4]
|
||||
c = gens[5:6]
|
||||
|
@ -11,7 +11,7 @@ function printbad(msg)
|
||||
println(" ", msg)
|
||||
end
|
||||
|
||||
F, gens = rational_function_field(Generic.Rationals{BigInt}(), ["x", "t₁", "t₂", "t₃"])
|
||||
F, gens = rational_function_field(AbstractAlgebra.Rationals{BigInt}(), ["x", "t₁", "t₂", "t₃"])
|
||||
x = gens[1]
|
||||
t = gens[2:4]
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user