Engine prototype #13
@ -184,6 +184,8 @@ function realize(ctx::Construction{T}) where T
|
||||
)
|
||||
|
||||
# add relations to center, orient, and scale the construction
|
||||
# [to do] the scaling constraint, as written, can be impossible to satisfy
|
||||
# when all of the spheres have to go through the origin
|
||||
if !isempty(ctx.points)
|
||||
append!(eqns, [sum(pt.coords[k] for pt in ctx.points) for k in 1:3])
|
||||
end
|
||||
|
@ -39,7 +39,7 @@ CoeffType = Rational{Int64}
|
||||
##freedom = Engine.dimension(ideal_ab_s)
|
||||
##println("Two points on a sphere: $freedom degrees of freedom")
|
||||
|
||||
spheres = [Engine.Sphere{CoeffType}() for _ in 1:3]
|
||||
##spheres = [Engine.Sphere{CoeffType}() for _ in 1:3]
|
||||
##tangencies = [
|
||||
## Engine.AlignsWithBy{CoeffType}(
|
||||
## spheres[n],
|
||||
@ -48,26 +48,45 @@ spheres = [Engine.Sphere{CoeffType}() for _ in 1:3]
|
||||
## )
|
||||
## for n in 1:3
|
||||
##]
|
||||
tangencies = [
|
||||
Engine.AlignsWithBy{CoeffType}(spheres[1], spheres[2], CoeffType(-1)),
|
||||
Engine.AlignsWithBy{CoeffType}(spheres[2], spheres[3], CoeffType(-1//2))
|
||||
]
|
||||
ctx_tan_sph = Engine.Construction{CoeffType}(elements = Set(spheres), relations = Set(tangencies))
|
||||
ideal_tan_sph, eqns_tan_sph = Engine.realize(ctx_tan_sph)
|
||||
freedom = Engine.dimension(ideal_tan_sph)
|
||||
##tangencies = [
|
||||
##Engine.LiesOn{CoeffType}(points[1], spheres[2]),
|
||||
##Engine.LiesOn{CoeffType}(points[1], spheres[3]),
|
||||
##Engine.LiesOn{CoeffType}(points[2], spheres[3]),
|
||||
##Engine.LiesOn{CoeffType}(points[2], spheres[1]),
|
||||
##Engine.LiesOn{CoeffType}(points[3], spheres[1]),
|
||||
##Engine.LiesOn{CoeffType}(points[3], spheres[2])
|
||||
##]
|
||||
##ctx_tan_sph = Engine.Construction{CoeffType}(elements = Set(spheres), relations = Set(tangencies))
|
||||
##ideal_tan_sph, eqns_tan_sph = Engine.realize(ctx_tan_sph)
|
||||
##freedom = Engine.dimension(ideal_tan_sph)
|
||||
##println("Three mutually tangent spheres: $freedom degrees of freedom")
|
||||
println("Chain of three spheres: $freedom degrees of freedom")
|
||||
|
||||
p = Engine.Point{CoeffType}()
|
||||
q = Engine.Point{CoeffType}()
|
||||
a = Engine.Sphere{CoeffType}()
|
||||
b = Engine.Sphere{CoeffType}()
|
||||
p_on_a = Engine.LiesOn{CoeffType}(p, a)
|
||||
p_on_b = Engine.LiesOn{CoeffType}(p, b)
|
||||
q_on_a = Engine.LiesOn{CoeffType}(q, a)
|
||||
q_on_b = Engine.LiesOn{CoeffType}(q, b)
|
||||
ctx_joined = Engine.Construction{CoeffType}(
|
||||
elements = Set([p, q, a, b]),
|
||||
relations= Set([p_on_a, p_on_b, q_on_a, q_on_b])
|
||||
)
|
||||
ideal_joined, eqns_joined = Engine.realize(ctx_joined)
|
||||
freedom = Engine.dimension(ideal_joined)
|
||||
println("Two points on two spheres: $freedom degrees of freedom")
|
||||
|
||||
# --- test rational cut ---
|
||||
|
||||
coordring = base_ring(ideal_tan_sph)
|
||||
coordring = base_ring(ideal_joined)
|
||||
vbls = Variable.(symbols(coordring))
|
||||
|
||||
# test a random witness set
|
||||
system = CompiledSystem(System(eqns_tan_sph, variables = vbls))
|
||||
system = CompiledSystem(System(eqns_joined, variables = vbls))
|
||||
norm2 = vec -> real(dot(conj.(vec), vec))
|
||||
Random.seed!(6071)
|
||||
n_planes = 16
|
||||
n_planes = 3
|
||||
samples = []
|
||||
for _ in 1:n_planes
|
||||
real_solns = solution.(Engine.Numerical.real_samples(system, freedom))
|
||||
|
Loading…
Reference in New Issue
Block a user