|
|
|
@ -1,8 +1,10 @@
|
|
|
|
|
module Engine
|
|
|
|
|
|
|
|
|
|
using LinearAlgebra
|
|
|
|
|
using GenericLinearAlgebra
|
|
|
|
|
using SparseArrays
|
|
|
|
|
using Random
|
|
|
|
|
using Optim
|
|
|
|
|
|
|
|
|
|
export rand_on_shell, Q, DescentHistory, realize_gram
|
|
|
|
|
|
|
|
|
@ -76,8 +78,11 @@ end
|
|
|
|
|
struct DescentHistory{T}
|
|
|
|
|
scaled_loss::Array{T}
|
|
|
|
|
neg_grad::Array{Matrix{T}}
|
|
|
|
|
base_step::Array{Matrix{T}}
|
|
|
|
|
hess::Array{Hermitian{T, Matrix{T}}}
|
|
|
|
|
slope::Array{T}
|
|
|
|
|
stepsize::Array{T}
|
|
|
|
|
used_grad::Array{Bool}
|
|
|
|
|
backoff_steps::Array{Int64}
|
|
|
|
|
last_line_L::Array{Matrix{T}}
|
|
|
|
|
last_line_loss::Array{T}
|
|
|
|
@ -85,13 +90,16 @@ struct DescentHistory{T}
|
|
|
|
|
function DescentHistory{T}(
|
|
|
|
|
scaled_loss = Array{T}(undef, 0),
|
|
|
|
|
neg_grad = Array{Matrix{T}}(undef, 0),
|
|
|
|
|
hess = Array{Hermitian{T, Matrix{T}}}(undef, 0),
|
|
|
|
|
base_step = Array{Matrix{T}}(undef, 0),
|
|
|
|
|
slope = Array{T}(undef, 0),
|
|
|
|
|
stepsize = Array{T}(undef, 0),
|
|
|
|
|
used_grad = Bool[],
|
|
|
|
|
backoff_steps = Int64[],
|
|
|
|
|
last_line_L = Array{Matrix{T}}(undef, 0),
|
|
|
|
|
last_line_loss = Array{T}(undef, 0)
|
|
|
|
|
) where T
|
|
|
|
|
new(scaled_loss, neg_grad, slope, stepsize, backoff_steps, last_line_L, last_line_loss)
|
|
|
|
|
new(scaled_loss, neg_grad, hess, base_step, slope, stepsize, used_grad, backoff_steps, last_line_L, last_line_loss)
|
|
|
|
|
end
|
|
|
|
|
end
|
|
|
|
|
|
|
|
|
@ -101,7 +109,7 @@ function realize_gram_gradient(
|
|
|
|
|
gram::SparseMatrixCSC{T, <:Any},
|
|
|
|
|
guess::Matrix{T};
|
|
|
|
|
scaled_tol = 1e-30,
|
|
|
|
|
target_improvement = 0.5,
|
|
|
|
|
min_efficiency = 0.5,
|
|
|
|
|
init_stepsize = 1.0,
|
|
|
|
|
backoff = 0.9,
|
|
|
|
|
max_descent_steps = 600,
|
|
|
|
@ -152,7 +160,7 @@ function realize_gram_gradient(
|
|
|
|
|
improvement = loss_last - loss
|
|
|
|
|
push!(history.last_line_L, L)
|
|
|
|
|
push!(history.last_line_loss, loss / scale_adjustment)
|
|
|
|
|
if improvement >= target_improvement * stepsize * slope
|
|
|
|
|
if improvement >= min_efficiency * stepsize * slope
|
|
|
|
|
history.backoff_steps[end] = backoff_steps
|
|
|
|
|
break
|
|
|
|
|
end
|
|
|
|
@ -201,7 +209,7 @@ function realize_gram_newton(
|
|
|
|
|
scale_adjustment = sqrt(T(length(constrained)))
|
|
|
|
|
tol = scale_adjustment * scaled_tol
|
|
|
|
|
|
|
|
|
|
# use newton's method
|
|
|
|
|
# use Newton's method
|
|
|
|
|
L = copy(guess)
|
|
|
|
|
for step in 0:max_steps
|
|
|
|
|
# evaluate the loss function
|
|
|
|
@ -229,8 +237,10 @@ function realize_gram_newton(
|
|
|
|
|
deriv_grad = 4*Q*(-basis_mat*Δ_proj + L*neg_dΔ_proj)
|
|
|
|
|
hess[:, (k-1)*element_dim + j] = reshape(deriv_grad, total_dim)
|
|
|
|
|
end
|
|
|
|
|
hess = Hermitian(hess)
|
|
|
|
|
push!(history.hess, hess)
|
|
|
|
|
|
|
|
|
|
# compute the newton step
|
|
|
|
|
# compute the Newton step
|
|
|
|
|
step = hess \ reshape(neg_grad, total_dim)
|
|
|
|
|
L += rate * reshape(step, dims)
|
|
|
|
|
end
|
|
|
|
@ -239,4 +249,221 @@ function realize_gram_newton(
|
|
|
|
|
L, history
|
|
|
|
|
end
|
|
|
|
|
|
|
|
|
|
LinearAlgebra.eigen!(A::Symmetric{BigFloat, Matrix{BigFloat}}; sortby::Nothing) =
|
|
|
|
|
eigen!(Hermitian(A))
|
|
|
|
|
|
|
|
|
|
function realize_gram_optim(
|
|
|
|
|
gram::SparseMatrixCSC{T, <:Any},
|
|
|
|
|
guess::Matrix{T}
|
|
|
|
|
) where T <: Number
|
|
|
|
|
# find the dimension of the search space
|
|
|
|
|
dims = size(guess)
|
|
|
|
|
element_dim, construction_dim = dims
|
|
|
|
|
total_dim = element_dim * construction_dim
|
|
|
|
|
|
|
|
|
|
# list the constrained entries of the gram matrix
|
|
|
|
|
J, K, _ = findnz(gram)
|
|
|
|
|
constrained = zip(J, K)
|
|
|
|
|
|
|
|
|
|
# scale the loss function
|
|
|
|
|
scale_adjustment = length(constrained)
|
|
|
|
|
|
|
|
|
|
function loss(L_vec)
|
|
|
|
|
L = reshape(L_vec, dims)
|
|
|
|
|
Δ_proj = proj_diff(gram, L'*Q*L)
|
|
|
|
|
dot(Δ_proj, Δ_proj) / scale_adjustment
|
|
|
|
|
end
|
|
|
|
|
|
|
|
|
|
function loss_grad!(storage, L_vec)
|
|
|
|
|
L = reshape(L_vec, dims)
|
|
|
|
|
Δ_proj = proj_diff(gram, L'*Q*L)
|
|
|
|
|
storage .= reshape(-4*Q*L*Δ_proj, total_dim) / scale_adjustment
|
|
|
|
|
end
|
|
|
|
|
|
|
|
|
|
function loss_hess!(storage, L_vec)
|
|
|
|
|
L = reshape(L_vec, dims)
|
|
|
|
|
Δ_proj = proj_diff(gram, L'*Q*L)
|
|
|
|
|
indices = [(j, k) for k in 1:construction_dim for j in 1:element_dim]
|
|
|
|
|
for (j, k) in indices
|
|
|
|
|
basis_mat = basis_matrix(T, j, k, dims)
|
|
|
|
|
neg_dΔ = basis_mat'*Q*L + L'*Q*basis_mat
|
|
|
|
|
neg_dΔ_proj = proj_to_entries(neg_dΔ, constrained)
|
|
|
|
|
deriv_grad = 4*Q*(-basis_mat*Δ_proj + L*neg_dΔ_proj) / scale_adjustment
|
|
|
|
|
storage[:, (k-1)*element_dim + j] = reshape(deriv_grad, total_dim)
|
|
|
|
|
end
|
|
|
|
|
end
|
|
|
|
|
|
|
|
|
|
optimize(
|
|
|
|
|
loss, loss_grad!, loss_hess!,
|
|
|
|
|
reshape(guess, total_dim),
|
|
|
|
|
NewtonTrustRegion()
|
|
|
|
|
)
|
|
|
|
|
end
|
|
|
|
|
|
|
|
|
|
# seek a matrix `L` for which `L'QL` matches the sparse matrix `gram` at every
|
|
|
|
|
# explicit entry of `gram`. use gradient descent starting from `guess`
|
|
|
|
|
function realize_gram(
|
|
|
|
|
gram::SparseMatrixCSC{T, <:Any},
|
|
|
|
|
guess::Matrix{T};
|
|
|
|
|
scaled_tol = 1e-30,
|
|
|
|
|
min_efficiency = 0.5,
|
|
|
|
|
init_rate = 1.0,
|
|
|
|
|
backoff = 0.9,
|
|
|
|
|
reg_scale = 1.1,
|
|
|
|
|
max_descent_steps = 200,
|
|
|
|
|
max_backoff_steps = 110
|
|
|
|
|
) where T <: Number
|
|
|
|
|
# start history
|
|
|
|
|
history = DescentHistory{T}()
|
|
|
|
|
|
|
|
|
|
# find the dimension of the search space
|
|
|
|
|
dims = size(guess)
|
|
|
|
|
element_dim, construction_dim = dims
|
|
|
|
|
total_dim = element_dim * construction_dim
|
|
|
|
|
|
|
|
|
|
# list the constrained entries of the gram matrix
|
|
|
|
|
J, K, _ = findnz(gram)
|
|
|
|
|
constrained = zip(J, K)
|
|
|
|
|
|
|
|
|
|
# scale the tolerance
|
|
|
|
|
scale_adjustment = sqrt(T(length(constrained)))
|
|
|
|
|
tol = scale_adjustment * scaled_tol
|
|
|
|
|
|
|
|
|
|
# initialize variables
|
|
|
|
|
grad_rate = init_rate
|
|
|
|
|
L = copy(guess)
|
|
|
|
|
|
|
|
|
|
# use Newton's method with backtracking and gradient descent backup
|
|
|
|
|
Δ_proj = proj_diff(gram, L'*Q*L)
|
|
|
|
|
loss = dot(Δ_proj, Δ_proj)
|
|
|
|
|
for step in 1:max_descent_steps
|
|
|
|
|
# stop if the loss is tolerably low
|
|
|
|
|
if loss < tol
|
|
|
|
|
break
|
|
|
|
|
end
|
|
|
|
|
|
|
|
|
|
# find the negative gradient of loss function
|
|
|
|
|
neg_grad = 4*Q*L*Δ_proj
|
|
|
|
|
|
|
|
|
|
# find the negative Hessian of the loss function
|
|
|
|
|
hess = Matrix{T}(undef, total_dim, total_dim)
|
|
|
|
|
indices = [(j, k) for k in 1:construction_dim for j in 1:element_dim]
|
|
|
|
|
for (j, k) in indices
|
|
|
|
|
basis_mat = basis_matrix(T, j, k, dims)
|
|
|
|
|
neg_dΔ = basis_mat'*Q*L + L'*Q*basis_mat
|
|
|
|
|
neg_dΔ_proj = proj_to_entries(neg_dΔ, constrained)
|
|
|
|
|
deriv_grad = 4*Q*(-basis_mat*Δ_proj + L*neg_dΔ_proj)
|
|
|
|
|
hess[:, (k-1)*element_dim + j] = reshape(deriv_grad, total_dim)
|
|
|
|
|
end
|
|
|
|
|
hess = Hermitian(hess)
|
|
|
|
|
push!(history.hess, hess)
|
|
|
|
|
|
|
|
|
|
# choose a base step: the Newton step if the Hessian is non-singular, and
|
|
|
|
|
# the gradient descent direction otherwise
|
|
|
|
|
#=
|
|
|
|
|
sing = false
|
|
|
|
|
base_step = try
|
|
|
|
|
reshape(hess \ reshape(neg_grad, total_dim), dims)
|
|
|
|
|
catch ex
|
|
|
|
|
if isa(ex, SingularException)
|
|
|
|
|
sing = true
|
|
|
|
|
normalize(neg_grad)
|
|
|
|
|
else
|
|
|
|
|
throw(ex)
|
|
|
|
|
end
|
|
|
|
|
end
|
|
|
|
|
=#
|
|
|
|
|
#=
|
|
|
|
|
if !sing
|
|
|
|
|
rate = one(T)
|
|
|
|
|
end
|
|
|
|
|
=#
|
|
|
|
|
#=
|
|
|
|
|
if cond(Float64.(hess)) < 1e5
|
|
|
|
|
sing = false
|
|
|
|
|
base_step = reshape(hess \ reshape(neg_grad, total_dim), dims)
|
|
|
|
|
else
|
|
|
|
|
sing = true
|
|
|
|
|
base_step = normalize(neg_grad)
|
|
|
|
|
end
|
|
|
|
|
=#
|
|
|
|
|
#=
|
|
|
|
|
if cond(Float64.(hess)) > 1e3
|
|
|
|
|
sing = true
|
|
|
|
|
hess += big"1e-5"*I
|
|
|
|
|
else
|
|
|
|
|
sing = false
|
|
|
|
|
end
|
|
|
|
|
base_step = reshape(hess \ reshape(neg_grad, total_dim), dims)
|
|
|
|
|
=#
|
|
|
|
|
min_eigval = minimum(eigvals(hess))
|
|
|
|
|
if min_eigval < 0
|
|
|
|
|
hess -= reg_scale * min_eigval * I
|
|
|
|
|
end
|
|
|
|
|
push!(history.used_grad, false)
|
|
|
|
|
base_step = reshape(hess \ reshape(neg_grad, total_dim), dims)
|
|
|
|
|
push!(history.base_step, base_step)
|
|
|
|
|
#=
|
|
|
|
|
push!(history.used_grad, sing)
|
|
|
|
|
=#
|
|
|
|
|
|
|
|
|
|
# store the current position, loss, and slope
|
|
|
|
|
L_last = L
|
|
|
|
|
loss_last = loss
|
|
|
|
|
push!(history.scaled_loss, loss / scale_adjustment)
|
|
|
|
|
push!(history.neg_grad, neg_grad)
|
|
|
|
|
push!(history.slope, norm(neg_grad))
|
|
|
|
|
|
|
|
|
|
# find a good step size using backtracking line search
|
|
|
|
|
push!(history.stepsize, 0)
|
|
|
|
|
push!(history.backoff_steps, max_backoff_steps)
|
|
|
|
|
empty!(history.last_line_L)
|
|
|
|
|
empty!(history.last_line_loss)
|
|
|
|
|
rate = one(T)
|
|
|
|
|
for backoff_steps in 0:max_backoff_steps
|
|
|
|
|
history.stepsize[end] = rate
|
|
|
|
|
|
|
|
|
|
# try Newton step, but not on the first step. doing at least one step of
|
|
|
|
|
# gradient descent seems to help prevent getting stuck, for some reason?
|
|
|
|
|
if step > 0
|
|
|
|
|
L = L_last + rate * base_step
|
|
|
|
|
Δ_proj = proj_diff(gram, L'*Q*L)
|
|
|
|
|
loss = dot(Δ_proj, Δ_proj)
|
|
|
|
|
improvement = loss_last - loss
|
|
|
|
|
push!(history.last_line_L, L)
|
|
|
|
|
push!(history.last_line_loss, loss / scale_adjustment)
|
|
|
|
|
if improvement >= min_efficiency * rate * dot(neg_grad, base_step)
|
|
|
|
|
history.backoff_steps[end] = backoff_steps
|
|
|
|
|
break
|
|
|
|
|
end
|
|
|
|
|
end
|
|
|
|
|
|
|
|
|
|
# try gradient descent step
|
|
|
|
|
slope = norm(neg_grad)
|
|
|
|
|
dir = neg_grad / slope
|
|
|
|
|
L = L_last + rate * grad_rate * dir
|
|
|
|
|
Δ_proj = proj_diff(gram, L'*Q*L)
|
|
|
|
|
loss = dot(Δ_proj, Δ_proj)
|
|
|
|
|
improvement = loss_last - loss
|
|
|
|
|
if improvement >= min_efficiency * rate * grad_rate * slope
|
|
|
|
|
grad_rate *= rate
|
|
|
|
|
history.used_grad[end] = true
|
|
|
|
|
history.backoff_steps[end] = backoff_steps
|
|
|
|
|
break
|
|
|
|
|
end
|
|
|
|
|
|
|
|
|
|
rate *= backoff
|
|
|
|
|
end
|
|
|
|
|
|
|
|
|
|
# [DEBUG] if we've hit a wall, quit
|
|
|
|
|
if history.backoff_steps[end] == max_backoff_steps
|
|
|
|
|
return L_last, history
|
|
|
|
|
end
|
|
|
|
|
end
|
|
|
|
|
|
|
|
|
|
# return the factorization and its history
|
|
|
|
|
push!(history.scaled_loss, loss / scale_adjustment)
|
|
|
|
|
L, history
|
|
|
|
|
end
|
|
|
|
|
|
|
|
|
|
end
|