Compare commits

..

No commits in common. "tangent-space" and "main" have entirely different histories.

7 changed files with 34 additions and 373 deletions

View File

@ -2,7 +2,7 @@ use dyna3::engine::{Q, irisawa::realize_irisawa_hexlet};
fn main() {
const SCALED_TOL: f64 = 1.0e-12;
let (config, _, success, history) = realize_irisawa_hexlet(SCALED_TOL);
let (config, success, history) = realize_irisawa_hexlet(SCALED_TOL);
print!("\nCompleted Gram matrix:{}", config.tr_mul(&*Q) * &config);
if success {
println!("Target accuracy achieved!");

View File

@ -18,7 +18,7 @@ fn main() {
]);
let frozen = [(3, 0)];
println!();
let (config, _, success, history) = realize_gram(
let (config, success, history) = realize_gram(
&gram, guess, &frozen,
1.0e-12, 0.5, 0.9, 1.1, 200, 110
);

View File

@ -21,7 +21,7 @@ fn main() {
])
};
println!();
let (config, _, success, history) = realize_gram(
let (config, success, history) = realize_gram(
&gram, guess, &[],
1.0e-12, 0.5, 0.9, 1.1, 200, 110
);

View File

@ -1,11 +1,11 @@
use nalgebra::{DMatrix, DVector, DVectorView, Vector3};
use nalgebra::{DMatrix, DVector, Vector3};
use rustc_hash::FxHashMap;
use slab::Slab;
use std::{collections::BTreeSet, sync::atomic::{AtomicU64, Ordering}};
use sycamore::prelude::*;
use web_sys::{console, wasm_bindgen::JsValue}; /* DEBUG */
use crate::engine::{realize_gram, ConfigSubspace, PartialMatrix, Q};
use crate::engine::{realize_gram, PartialMatrix};
// the types of the keys we use to access an assembly's elements and constraints
pub type ElementKey = usize;
@ -33,9 +33,8 @@ pub struct Element {
pub serial: u64,
// the configuration matrix column index that was assigned to this element
// last time the assembly was realized, or `None` if the element has never
// been through a realization
column_index: Option<usize>
// last time the assembly was realized
column_index: usize
}
impl Element {
@ -63,7 +62,7 @@ impl Element {
representation: create_signal(representation),
constraints: create_signal(BTreeSet::default()),
serial: serial,
column_index: None
column_index: 0
}
}
@ -110,6 +109,7 @@ impl Element {
}
}
}
#[derive(Clone)]
pub struct Constraint {
@ -120,13 +120,6 @@ pub struct Constraint {
pub active: Signal<bool>
}
pub struct ElementMotion<'a> {
pub key: ElementKey,
pub velocity: DVectorView<'a, f64>
}
type AssemblyMotion<'a> = Vec<ElementMotion<'a>>;
// a complete, view-independent description of an assembly
#[derive(Clone)]
pub struct Assembly {
@ -134,18 +127,6 @@ pub struct Assembly {
pub elements: Signal<Slab<Element>>,
pub constraints: Signal<Slab<Constraint>>,
// solution variety tangent space. the basis vectors are stored in
// configuration matrix format, ordered according to the elements' column
// indices. when you realize the assembly, every element that's present
// during realization gets a column index and is reflected in the tangent
// space. since the methods in this module never assign column indices
// without later realizing the assembly, we get the following invariant:
//
// (1) if an element has a column index, its tangent motions can be found
// in that column of the tangent space basis matrices
//
pub tangent: Signal<ConfigSubspace>,
// indexing
pub elements_by_id: Signal<FxHashMap<String, ElementKey>>
}
@ -155,7 +136,6 @@ impl Assembly {
Assembly {
elements: create_signal(Slab::new()),
constraints: create_signal(Slab::new()),
tangent: create_signal(ConfigSubspace::zero(0)),
elements_by_id: create_signal(FxHashMap::default())
}
}
@ -219,7 +199,7 @@ impl Assembly {
// index the elements
self.elements.update_silent(|elts| {
for (index, (_, elt)) in elts.into_iter().enumerate() {
elt.column_index = Some(index);
elt.column_index = index;
}
});
@ -231,8 +211,8 @@ impl Assembly {
for (_, cst) in csts {
if cst.active.get_untracked() && cst.lorentz_prod_valid.get_untracked() {
let subjects = cst.subjects;
let row = elts[subjects.0].column_index.unwrap();
let col = elts[subjects.1].column_index.unwrap();
let row = elts[subjects.0].column_index;
let col = elts[subjects.1].column_index;
gram_to_be.push_sym(row, col, cst.lorentz_prod.get_untracked());
}
}
@ -242,7 +222,7 @@ impl Assembly {
// Gram matrix
let mut guess_to_be = DMatrix::<f64>::zeros(5, elts.len());
for (_, elt) in elts {
let index = elt.column_index.unwrap();
let index = elt.column_index;
gram_to_be.push_sym(index, index, 1.0);
guess_to_be.set_column(index, &elt.representation.get_clone_untracked());
}
@ -267,7 +247,7 @@ impl Assembly {
}
// look for a configuration with the given Gram matrix
let (config, tangent, success, history) = realize_gram(
let (config, success, history) = realize_gram(
&gram, guess, &[],
1.0e-12, 0.5, 0.9, 1.1, 200, 110
);
@ -283,111 +263,14 @@ impl Assembly {
));
console::log_2(&JsValue::from("Steps:"), &JsValue::from(history.scaled_loss.len() - 1));
console::log_2(&JsValue::from("Loss:"), &JsValue::from(*history.scaled_loss.last().unwrap()));
console::log_2(&JsValue::from("Tangent dimension:"), &JsValue::from(tangent.dim()));
if success {
// read out the solution
for (_, elt) in self.elements.get_clone_untracked() {
elt.representation.update(
|rep| rep.set_column(0, &config.column(elt.column_index.unwrap()))
|rep| rep.set_column(0, &config.column(elt.column_index))
);
}
// save the tangent space
self.tangent.set_silent(tangent);
}
}
// --- deformation ---
// project the given motion to the tangent space of the solution variety and
// move the assembly along it. the implementation is based on invariant (1)
// from above and the following additional invariant:
//
// (2) if an element is affected by a constraint, it has a column index
//
// we have this invariant because the assembly gets realized each time you
// add a constraint
pub fn deform(&self, motion: AssemblyMotion) {
/* KLUDGE */
// when the tangent space is zero, deformation won't do anything, but
// the attempt to deform should be registered in the UI. this console
// message will do for now
if self.tangent.with(|tan| tan.dim() <= 0 && tan.assembly_dim() > 0) {
console::log_1(&JsValue::from("The assembly is rigid"));
}
// give a column index to each moving element that doesn't have one yet.
// this temporarily breaks invariant (1), but the invariant will be
// restored when we realize the assembly at the end of the deformation.
// in the process, we find out how many matrix columns we'll need to
// hold the deformation
let realized_dim = self.tangent.with(|tan| tan.assembly_dim());
let motion_dim = self.elements.update_silent(|elts| {
let mut next_column_index = realized_dim;
for elt_motion in motion.iter() {
let moving_elt = &mut elts[elt_motion.key];
if moving_elt.column_index.is_none() {
moving_elt.column_index = Some(next_column_index);
next_column_index += 1;
}
}
next_column_index
});
// project the element motions onto the tangent space of the solution
// variety and sum them to get a deformation of the whole assembly. the
// matrix `motion_proj` that holds the deformation has extra columns for
// any moving elements that aren't reflected in the saved tangent space
const ELEMENT_DIM: usize = 5;
let mut motion_proj = DMatrix::zeros(ELEMENT_DIM, motion_dim);
for elt_motion in motion {
// we can unwrap the column index because we know that every moving
// element has one at this point
let column_index = self.elements.with_untracked(
|elts| elts[elt_motion.key].column_index.unwrap()
);
if column_index < realized_dim {
// this element had a column index when we started, so by
// invariant (1), it's reflected in the tangent space
let mut target_columns = motion_proj.columns_mut(0, realized_dim);
target_columns += self.tangent.with(
|tan| tan.proj(&elt_motion.velocity, column_index)
);
} else {
// this element didn't have a column index when we started, so
// by invariant (2), it's unconstrained
let mut target_column = motion_proj.column_mut(column_index);
target_column += elt_motion.velocity;
}
}
// step each element along the mass shell geodesic that matches its
// velocity in the deformation found above
/* KLUDGE */
// since our test assemblies only include spheres, we assume that every
// element is on the 1 mass shell
for (_, elt) in self.elements.get_clone_untracked() {
elt.representation.update_silent(|rep| {
match elt.column_index {
Some(column_index) => {
let rep_next = &*rep + motion_proj.column(column_index);
let normalizer = rep_next.dot(&(&*Q * &rep_next));
rep.set_column(0, &(rep_next / normalizer));
},
None => {
console::log_1(&JsValue::from(
format!("No velocity to unpack for fresh element \"{}\"", elt.id)
))
}
};
});
}
// bring the configuration back onto the solution variety. this also
// gets the elements' column indices and the saved tangent space back in
// sync
self.realize();
}
}

View File

@ -1,5 +1,5 @@
use core::array;
use nalgebra::{DMatrix, DVector, Rotation3, Vector3};
use nalgebra::{DMatrix, Rotation3, Vector3};
use sycamore::{prelude::*, motion::create_raf};
use web_sys::{
console,
@ -14,7 +14,7 @@ use web_sys::{
wasm_bindgen::{JsCast, JsValue}
};
use crate::{AppState, assembly::{ElementKey, ElementMotion}};
use crate::{AppState, assembly::ElementKey};
fn compile_shader(
context: &WebGl2RenderingContext,
@ -123,14 +123,6 @@ pub fn Display() -> View {
let zoom_out = create_signal(0.0);
let turntable = create_signal(false); /* BENCHMARKING */
// manipulation
let translate_neg_x = create_signal(0.0);
let translate_pos_x = create_signal(0.0);
let translate_neg_y = create_signal(0.0);
let translate_pos_y = create_signal(0.0);
let translate_neg_z = create_signal(0.0);
let translate_pos_z = create_signal(0.0);
// change listener
let scene_changed = create_signal(true);
create_effect(move || {
@ -149,7 +141,6 @@ pub fn Display() -> View {
let mut frames_since_last_sample = 0;
let mean_frame_interval = create_signal(0.0);
let assembly_for_raf = state.assembly.clone();
on_mount(move || {
// timing
let mut last_time = 0.0;
@ -162,9 +153,6 @@ pub fn Display() -> View {
let mut rotation = DMatrix::<f64>::identity(5, 5);
let mut location_z: f64 = 5.0;
// manipulation
const TRANSLATION_SPEED: f64 = 0.15; // in length units per second
// display parameters
const OPACITY: f32 = 0.5; /* SCAFFOLDING */
const HIGHLIGHT: f32 = 0.2; /* SCAFFOLDING */
@ -285,14 +273,6 @@ pub fn Display() -> View {
let zoom_out_val = zoom_out.get();
let turntable_val = turntable.get(); /* BENCHMARKING */
// get the manipulation state
let translate_neg_x_val = translate_neg_x.get();
let translate_pos_x_val = translate_pos_x.get();
let translate_neg_y_val = translate_neg_y.get();
let translate_pos_y_val = translate_pos_y.get();
let translate_neg_z_val = translate_neg_z.get();
let translate_pos_z_val = translate_pos_z.get();
// update the assembly's orientation
let ang_vel = {
let pitch = pitch_up_val - pitch_down_val;
@ -318,41 +298,6 @@ pub fn Display() -> View {
let zoom = zoom_out_val - zoom_in_val;
location_z *= (time_step * ZOOM_SPEED * zoom).exp();
// manipulate the assembly
if state.selection.with(|sel| sel.len() == 1) {
let sel = state.selection.with(
|sel| *sel.into_iter().next().unwrap()
);
let rep = state.assembly.elements.with_untracked(
|elts| elts[sel].representation.get_clone_untracked()
);
let translate_x = translate_pos_x_val - translate_neg_x_val;
let translate_y = translate_pos_y_val - translate_neg_y_val;
let translate_z = translate_pos_z_val - translate_neg_z_val;
if translate_x != 0.0 || translate_y != 0.0 || translate_z != 0.0 {
let vel_field = {
let u = Vector3::new(translate_x, translate_y, translate_z).normalize();
DMatrix::from_column_slice(5, 5, &[
0.0, 0.0, 0.0, 0.0, u[0],
0.0, 0.0, 0.0, 0.0, u[1],
0.0, 0.0, 0.0, 0.0, u[2],
2.0*u[0], 2.0*u[1], 2.0*u[2], 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0
])
};
let elt_motion: DVector<f64> = time_step * TRANSLATION_SPEED * vel_field * rep;
assembly_for_raf.deform(
vec![
ElementMotion {
key: sel,
velocity: elt_motion.as_view()
}
]
);
scene_changed.set(true);
}
}
if scene_changed.get() {
/* INSTRUMENTS */
// measure mean frame interval
@ -471,7 +416,7 @@ pub fn Display() -> View {
start_animation_loop();
});
let set_nav_signal = move |event: &KeyboardEvent, value: f64| {
let set_nav_signal = move |event: KeyboardEvent, value: f64| {
let mut navigating = true;
let shift = event.shift_key();
match event.key().as_str() {
@ -491,23 +436,6 @@ pub fn Display() -> View {
}
};
let set_manip_signal = move |event: &KeyboardEvent, value: f64| {
let mut manipulating = true;
let shift = event.shift_key();
match event.key().as_str() {
"d" | "D" => translate_pos_x.set(value),
"a" | "A" => translate_neg_x.set(value),
"w" | "W" if shift => translate_neg_z.set(value),
"s" | "S" if shift => translate_pos_z.set(value),
"w" | "W" => translate_pos_y.set(value),
"s" | "S" => translate_neg_y.set(value),
_ => manipulating = false
};
if manipulating {
event.prevent_default();
}
};
view! {
/* TO DO */
// switch back to integer-valued parameters when that becomes possible
@ -519,7 +447,6 @@ pub fn Display() -> View {
tabindex="0",
on:keydown=move |event: KeyboardEvent| {
if event.key() == "Shift" {
// swap navigation inputs
roll_cw.set(yaw_right.get());
roll_ccw.set(yaw_left.get());
zoom_in.set(pitch_up.get());
@ -528,24 +455,16 @@ pub fn Display() -> View {
yaw_left.set(0.0);
pitch_up.set(0.0);
pitch_down.set(0.0);
// swap manipulation inputs
translate_pos_z.set(translate_neg_y.get());
translate_neg_z.set(translate_pos_y.get());
translate_pos_y.set(0.0);
translate_neg_y.set(0.0);
} else {
if event.key() == "Enter" { /* BENCHMARKING */
turntable.set_fn(|turn| !turn);
scene_changed.set(true);
}
set_nav_signal(&event, 1.0);
set_manip_signal(&event, 1.0);
set_nav_signal(event, 1.0);
}
},
on:keyup=move |event: KeyboardEvent| {
if event.key() == "Shift" {
// swap navigation inputs
yaw_right.set(roll_cw.get());
yaw_left.set(roll_ccw.get());
pitch_up.set(zoom_in.get());
@ -554,15 +473,8 @@ pub fn Display() -> View {
roll_ccw.set(0.0);
zoom_in.set(0.0);
zoom_out.set(0.0);
// swap manipulation inputs
translate_pos_y.set(translate_neg_z.get());
translate_neg_y.set(translate_pos_z.get());
translate_pos_z.set(0.0);
translate_neg_z.set(0.0);
} else {
set_nav_signal(&event, 0.0);
set_manip_signal(&event, 0.0);
set_nav_signal(event, 0.0);
}
},
on:blur=move |_| {

View File

@ -1,5 +1,5 @@
use lazy_static::lazy_static;
use nalgebra::{Const, DMatrix, DVector, DVectorView, Dyn, SymmetricEigen};
use nalgebra::{Const, DMatrix, DVector, Dyn};
use web_sys::{console, wasm_bindgen::JsValue}; /* DEBUG */
// --- elements ---
@ -85,74 +85,6 @@ impl PartialMatrix {
}
}
// --- configuration subspaces ---
#[derive(Clone)]
pub struct ConfigSubspace {
assembly_dim: usize,
basis: Vec<DMatrix<f64>>
}
impl ConfigSubspace {
pub fn zero(assembly_dim: usize) -> ConfigSubspace {
ConfigSubspace {
assembly_dim: assembly_dim,
basis: Vec::new()
}
}
// approximate the kernel of a symmetric endomorphism of the configuration
// space for `assembly_dim` elements. we consider an eigenvector to be part
// of the kernel if its eigenvalue is smaller than the constant `THRESHOLD`
fn symmetric_kernel(a: DMatrix<f64>, assembly_dim: usize) -> ConfigSubspace {
const ELEMENT_DIM: usize = 5;
const THRESHOLD: f64 = 1.0e-4;
let eig = SymmetricEigen::new(a);
let eig_vecs = eig.eigenvectors.column_iter();
let eig_pairs = eig.eigenvalues.iter().zip(eig_vecs);
let basis = eig_pairs.filter_map(
|(λ, v)| (λ.abs() < THRESHOLD).then_some(
Into::<DMatrix<f64>>::into(
v.reshape_generic(Dyn(ELEMENT_DIM), Dyn(assembly_dim))
)
)
);
/* DEBUG */
// print the eigenvalues
#[cfg(all(target_family = "wasm", target_os = "unknown"))]
console::log_1(&JsValue::from(
format!("Eigenvalues used to find kernel: {}", eig.eigenvalues)
));
ConfigSubspace {
assembly_dim: assembly_dim,
basis: basis.collect()
}
}
pub fn dim(&self) -> usize {
self.basis.len()
}
pub fn assembly_dim(&self) -> usize {
self.assembly_dim
}
// find the projection onto this subspace of the motion where the element
// with the given column index has velocity `v`
pub fn proj(&self, v: &DVectorView<f64>, column_index: usize) -> DMatrix<f64> {
if self.dim() == 0 {
const ELEMENT_DIM: usize = 5;
DMatrix::zeros(ELEMENT_DIM, self.assembly_dim)
} else {
self.basis.iter().map(
|b| b.column(column_index).dot(&v) * b
).sum()
}
}
}
// --- descent history ---
pub struct DescentHistory {
@ -249,7 +181,7 @@ pub fn realize_gram(
reg_scale: f64,
max_descent_steps: i32,
max_backoff_steps: i32
) -> (DMatrix<f64>, ConfigSubspace, bool, DescentHistory) {
) -> (DMatrix<f64>, bool, DescentHistory) {
// start the descent history
let mut history = DescentHistory::new();
@ -269,8 +201,12 @@ pub fn realize_gram(
// use Newton's method with backtracking and gradient descent backup
let mut state = SearchState::from_config(gram, guess);
let mut hess = DMatrix::zeros(element_dim, assembly_dim);
for _ in 0..max_descent_steps {
// stop if the loss is tolerably low
history.config.push(state.config.clone());
history.scaled_loss.push(state.loss / scale_adjustment);
if state.loss < tol { break; }
// find the negative gradient of the loss function
let neg_grad = 4.0 * &*Q * &state.config * &state.err_proj;
let mut neg_grad_stacked = neg_grad.clone().reshape_generic(Dyn(total_dim), Const::<1>);
@ -293,7 +229,7 @@ pub fn realize_gram(
hess_cols.push(deriv_grad.reshape_generic(Dyn(total_dim), Const::<1>));
}
}
hess = DMatrix::from_columns(hess_cols.as_slice());
let mut hess = DMatrix::from_columns(hess_cols.as_slice());
// regularize the Hessian
let min_eigval = hess.symmetric_eigenvalues().min();
@ -313,11 +249,6 @@ pub fn realize_gram(
hess[(k, k)] = 1.0;
}
// stop if the loss is tolerably low
history.config.push(state.config.clone());
history.scaled_loss.push(state.loss / scale_adjustment);
if state.loss < tol { break; }
// compute the Newton step
/*
we need to either handle or eliminate the case where the minimum
@ -325,7 +256,7 @@ pub fn realize_gram(
singular. right now, this causes the Cholesky decomposition to return
`None`, leading to a panic when we unrap
*/
let base_step_stacked = hess.clone().cholesky().unwrap().solve(&neg_grad_stacked);
let base_step_stacked = hess.cholesky().unwrap().solve(&neg_grad_stacked);
let base_step = base_step_stacked.reshape_generic(Dyn(element_dim), Dyn(assembly_dim));
history.base_step.push(base_step.clone());
@ -338,16 +269,10 @@ pub fn realize_gram(
state = better_state;
history.backoff_steps.push(backoff_steps);
},
None => return (state.config, ConfigSubspace::zero(assembly_dim), false, history)
None => return (state.config, false, history)
};
}
let success = state.loss < tol;
let tangent = if success {
ConfigSubspace::symmetric_kernel(hess, assembly_dim)
} else {
ConfigSubspace::zero(assembly_dim)
};
(state.config, tangent, success, history)
(state.config, state.loss < tol, history)
}
// --- tests ---
@ -366,7 +291,7 @@ pub mod irisawa {
use super::*;
pub fn realize_irisawa_hexlet(scaled_tol: f64) -> (DMatrix<f64>, ConfigSubspace, bool, DescentHistory) {
pub fn realize_irisawa_hexlet(scaled_tol: f64) -> (DMatrix<f64>, bool, DescentHistory) {
let gram = {
let mut gram_to_be = PartialMatrix::new();
for s in 0..9 {
@ -474,7 +399,7 @@ mod tests {
fn irisawa_hexlet_test() {
// solve Irisawa's problem
const SCALED_TOL: f64 = 1.0e-12;
let (config, _, _, _) = realize_irisawa_hexlet(SCALED_TOL);
let (config, _, _) = realize_irisawa_hexlet(SCALED_TOL);
// check against Irisawa's solution
let entry_tol = SCALED_TOL.sqrt();
@ -484,61 +409,6 @@ mod tests {
}
}
#[test]
fn tangent_test() {
const SCALED_TOL: f64 = 1.0e-12;
const ELEMENT_DIM: usize = 5;
const ASSEMBLY_DIM: usize = 3;
let gram = {
let mut gram_to_be = PartialMatrix::new();
for j in 0..3 {
for k in j..3 {
gram_to_be.push_sym(j, k, if j == k { 1.0 } else { -1.0 });
}
}
gram_to_be
};
let guess = DMatrix::from_columns(&[
sphere(0.0, 0.0, 0.0, -2.0),
sphere(0.0, 0.0, 1.0, 1.0),
sphere(0.0, 0.0, -1.0, 1.0)
]);
let frozen: [_; 5] = std::array::from_fn(|k| (k, 0));
let (config, tangent, success, history) = realize_gram(
&gram, guess.clone(), &frozen,
SCALED_TOL, 0.5, 0.9, 1.1, 200, 110
);
assert_eq!(config, guess);
assert_eq!(success, true);
assert_eq!(history.scaled_loss.len(), 1);
// confirm that the tangent space has dimension five or less
let ConfigSubspace(ref tangent_basis) = tangent;
assert_eq!(tangent_basis.len(), 5);
// confirm that the tangent space contains all the motions we expect it
// to. since we've already bounded the dimension of the tangent space,
// this confirms that the tangent space is what we expect it to be
let tangent_motions = vec![
basis_matrix((0, 1), ELEMENT_DIM, ASSEMBLY_DIM),
basis_matrix((1, 1), ELEMENT_DIM, ASSEMBLY_DIM),
basis_matrix((0, 2), ELEMENT_DIM, ASSEMBLY_DIM),
basis_matrix((1, 2), ELEMENT_DIM, ASSEMBLY_DIM),
DMatrix::<f64>::from_column_slice(ELEMENT_DIM, 3, &[
0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, -1.0, -0.25, -1.0,
0.0, 0.0, -1.0, 0.25, 1.0
])
];
let tol_sq = ((ELEMENT_DIM * ASSEMBLY_DIM) as f64) * SCALED_TOL * SCALED_TOL;
for motion in tangent_motions {
let motion_proj: DMatrix<_> = motion.column_iter().enumerate().map(
|(k, v)| tangent.proj(&v, k)
).sum();
assert!((motion - motion_proj).norm_squared() < tol_sq);
}
}
// at the frozen indices, the optimization steps should have exact zeros,
// and the realized configuration should match the initial guess
#[test]
@ -558,7 +428,7 @@ mod tests {
]);
let frozen = [(3, 0), (3, 1)];
println!();
let (config, _, success, history) = realize_gram(
let (config, success, history) = realize_gram(
&gram, guess.clone(), &frozen,
1.0e-12, 0.5, 0.9, 1.1, 200, 110
);

View File

@ -46,10 +46,6 @@ impl AppState {
}
fn main() {
// set the console error panic hook
#[cfg(feature = "console_error_panic_hook")]
console_error_panic_hook::set_once();
sycamore::render(|| {
provide_context(AppState::new());