Compare commits

..

33 Commits

Author SHA1 Message Date
Aaron Fenyes
a06d5942e3 Separate test and example for Irisawa hexlet
Put shared code in the conditionally compiled `engine::irisawa` module.
2024-11-09 11:22:15 -08:00
Aaron Fenyes
4094301318 Factor out the realization of the Irisawa hexlet 2024-11-09 01:04:44 -08:00
Aaron Fenyes
3a0f3a8d1c Streamline Gram matrix setup for Irisawa hexlet 2024-11-09 00:34:15 -08:00
Aaron Fenyes
27f88455fb Turn assertionless tests into Cargo examples 2024-11-08 19:48:26 -08:00
Aaron Fenyes
fc39f2a5f3 Switch font to Fira Sans
It has tabular numbers, and it's nice and big too.
2024-11-01 23:58:45 -07:00
Aaron Fenyes
6e42681b71 Stop Assembly::realize from reacting to itself
Previously, `realize` both tracked and updated the element vectors, so
calling it in a reactive context could start a feedback loop.
2024-11-01 20:49:00 -07:00
Aaron Fenyes
327a1267d5 Test representation validity in realization effect 2024-11-01 20:40:25 -07:00
Aaron Fenyes
e12f4332fe Use tabular numbers for element vectors 2024-11-01 19:11:33 -07:00
Aaron Fenyes
5ce5f855d5 Make element vectors reactive 2024-11-01 19:01:14 -07:00
Aaron Fenyes
e42b8da897 Add an element constructor 2024-11-01 18:56:11 -07:00
Aaron Fenyes
bbeebe4464 Simplify memos 2024-11-01 04:43:30 -07:00
Aaron Fenyes
fb292d8b5b Render constraint lists dynamically 2024-11-01 04:32:33 -07:00
Aaron Fenyes
a3fce9d298 Correct typo in comment 2024-10-31 01:24:06 -07:00
Aaron Fenyes
5b522c12ee Include vector representation in element diff key 2024-10-31 01:23:22 -07:00
Aaron Fenyes
1f3a6eea3b Round element vectors to three decimal places 2024-10-30 23:57:15 -07:00
Aaron Fenyes
35d3e4a6f8 Specify fonts
This should help the interface look more consistent across platforms.
The font choices are just placeholders: consistency is the main goal.
2024-10-30 23:29:48 -07:00
Aaron Fenyes
0a13c062f4 Flag constraints with invalid input 2024-10-30 21:12:40 -07:00
Aaron Fenyes
9555d8f784 Update title and authors 2024-10-30 16:06:38 -07:00
Aaron Fenyes
df6db983ba Factor out element outline item 2024-10-30 16:01:19 -07:00
Aaron Fenyes
7f595ff27a Factor out constraint outline item 2024-10-30 15:49:01 -07:00
Aaron Fenyes
9c191ae586 Polish log messages 2024-10-30 00:27:16 -07:00
Aaron Fenyes
9e31037e17 Spread web-sys imports over multiple lines 2024-10-30 00:19:44 -07:00
Aaron Fenyes
c2e3c64d4a Remove debug log from Lorentz product input 2024-10-30 00:16:34 -07:00
Aaron Fenyes
76ad4245d5 Factor out Lorentz product input 2024-10-29 23:43:41 -07:00
Aaron Fenyes
a46ef2c8d6 Work around data binding bug in number input
Setting `bind:value` or `bind:valueAsNumber` for a number input seems to
restrict what you can type in it. We work around this by switching to
text inputs for now. We should probably switch back to number inputs if
we can, though, because they let us take advantage of the browser's
parsing and validation.
2024-10-29 22:53:48 -07:00
Aaron Fenyes
e0880d2ad2 Make constraints editable 2024-10-29 22:32:00 -07:00
Aaron Fenyes
e5f4d523f9 Update the realization when a constraint is activated
Sycamore probably has a better way to do this, but this way works for
now.
2024-10-29 13:46:15 -07:00
Aaron Fenyes
a37c71153d Enforce constraints in the editor 2024-10-26 23:51:27 -07:00
Aaron Fenyes
ce33bbf418 Record optimization history 2024-10-26 01:07:17 -07:00
Aaron Fenyes
9f8632efb3 Port the Irisawa hexlet test to Rust
In the process, notice that the tolerance scale adjustment was ported
wrong, and correct it.
2024-10-25 21:43:53 -07:00
Aaron Fenyes
9fe03264ab Port the Gram matrix realization routine to Rust
Validate with the process inspection example tests, which print out
their results and optimization histories when run one at a time in
`--nocapture` mode.
2024-10-25 17:34:29 -07:00
Aaron Fenyes
e59d60bf77 Reorganize search state; remove unused variables 2024-10-25 17:17:49 -07:00
Aaron Fenyes
16df161fe7 Test alternate projection technique 2024-10-24 19:51:10 -07:00
14 changed files with 288 additions and 380 deletions

View File

@ -6,6 +6,7 @@ edition = "2021"
[features] [features]
default = ["console_error_panic_hook"] default = ["console_error_panic_hook"]
irisawa = []
[dependencies] [dependencies]
itertools = "0.13.0" itertools = "0.13.0"
@ -36,7 +37,12 @@ features = [
'WebGlVertexArrayObject' 'WebGlVertexArrayObject'
] ]
# the self-dependency specifies features to use for tests and examples
#
# https://github.com/rust-lang/cargo/issues/2911#issuecomment-1483256987
#
[dev-dependencies] [dev-dependencies]
dyna3 = { path = ".", default-features = false, features = ["irisawa"] }
wasm-bindgen-test = "0.3.34" wasm-bindgen-test = "0.3.34"
[profile.release] [profile.release]

View File

@ -0,0 +1,25 @@
use dyna3::engine::{Q, irisawa::realize_irisawa_hexlet};
fn main() {
const SCALED_TOL: f64 = 1.0e-12;
let (config, success, history) = realize_irisawa_hexlet(SCALED_TOL);
print!("\nCompleted Gram matrix:{}", config.tr_mul(&*Q) * &config);
if success {
println!("Target accuracy achieved!");
} else {
println!("Failed to reach target accuracy");
}
println!("Steps: {}", history.scaled_loss.len() - 1);
println!("Loss: {}", history.scaled_loss.last().unwrap());
if success {
println!("\nChain diameters:");
println!(" {} sun (given)", 1.0 / config[(3, 3)]);
for k in 4..9 {
println!(" {} sun", 1.0 / config[(3, k)]);
}
}
println!("\nStep │ Loss\n─────┼────────────────────────────────");
for (step, scaled_loss) in history.scaled_loss.into_iter().enumerate() {
println!("{:<4}{}", step, scaled_loss);
}
}

View File

@ -0,0 +1,38 @@
use nalgebra::DMatrix;
use dyna3::engine::{Q, point, realize_gram, sphere, PartialMatrix};
fn main() {
let gram = {
let mut gram_to_be = PartialMatrix::new();
for j in 0..2 {
for k in j..2 {
gram_to_be.push_sym(j, k, if (j, k) == (1, 1) { 1.0 } else { 0.0 });
}
}
gram_to_be
};
let guess = DMatrix::from_columns(&[
point(0.0, 0.0, 2.0),
sphere(0.0, 0.0, 0.0, 1.0)
]);
let frozen = [(3, 0)];
println!();
let (config, success, history) = realize_gram(
&gram, guess, &frozen,
1.0e-12, 0.5, 0.9, 1.1, 200, 110
);
print!("\nCompleted Gram matrix:{}", config.tr_mul(&*Q) * &config);
print!("Configuration:{}", config);
if success {
println!("Target accuracy achieved!");
} else {
println!("Failed to reach target accuracy");
}
println!("Steps: {}", history.scaled_loss.len() - 1);
println!("Loss: {}", history.scaled_loss.last().unwrap());
println!("\nStep │ Loss\n─────┼────────────────────────────────");
for (step, scaled_loss) in history.scaled_loss.into_iter().enumerate() {
println!("{:<4}{}", step, scaled_loss);
}
}

View File

@ -0,0 +1,40 @@
use nalgebra::DMatrix;
use dyna3::engine::{Q, realize_gram, sphere, PartialMatrix};
fn main() {
let gram = {
let mut gram_to_be = PartialMatrix::new();
for j in 0..3 {
for k in j..3 {
gram_to_be.push_sym(j, k, if j == k { 1.0 } else { -1.0 });
}
}
gram_to_be
};
let guess = {
let a: f64 = 0.75_f64.sqrt();
DMatrix::from_columns(&[
sphere(1.0, 0.0, 0.0, 1.0),
sphere(-0.5, a, 0.0, 1.0),
sphere(-0.5, -a, 0.0, 1.0)
])
};
println!();
let (config, success, history) = realize_gram(
&gram, guess, &[],
1.0e-12, 0.5, 0.9, 1.1, 200, 110
);
print!("\nCompleted Gram matrix:{}", config.tr_mul(&*Q) * &config);
if success {
println!("Target accuracy achieved!");
} else {
println!("Failed to reach target accuracy");
}
println!("Steps: {}", history.scaled_loss.len() - 1);
println!("Loss: {}", history.scaled_loss.last().unwrap());
println!("\nStep │ Loss\n─────┼────────────────────────────────");
for (step, scaled_loss) in history.scaled_loss.into_iter().enumerate() {
println!("{:<4}{}", step, scaled_loss);
}
}

View File

@ -1,19 +1,7 @@
:root {
--text: #fcfcfc; /* almost white */
--text-bright: white;
--text-invalid: #f58fc2; /* bright pink */
--border: #555; /* light gray */
--border-focus: #aaa; /* bright gray */
--border-invalid: #70495c; /* dusky pink */
--selection-highlight: #444; /* medium gray */
--page-background: #222; /* dark gray */
--display-background: #020202; /* almost black */
}
body { body {
margin: 0px; margin: 0px;
color: var(--text); color: #fcfcfc;
background-color: var(--page-background); background-color: #222;
font-family: 'Fira Sans', sans-serif; font-family: 'Fira Sans', sans-serif;
} }
@ -29,7 +17,7 @@ body {
padding: 0px; padding: 0px;
border-width: 0px 1px 0px 0px; border-width: 0px 1px 0px 0px;
border-style: solid; border-style: solid;
border-color: var(--border); border-color: #555;
} }
/* add-remove */ /* add-remove */
@ -47,10 +35,6 @@ body {
} }
/* KLUDGE */ /* KLUDGE */
/*
for convenience, we're using emoji as temporary icons for some buttons. these
buttons need to be displayed in an emoji font
*/
#add-remove > button.emoji { #add-remove > button.emoji {
font-family: 'Noto Emoji', sans-serif; font-family: 'Noto Emoji', sans-serif;
} }
@ -73,49 +57,49 @@ summary {
} }
summary.selected { summary.selected {
color: var(--text-bright); color: #fff;
background-color: var(--selection-highlight); background-color: #444;
} }
summary > div, .constraint { summary > div, .cst {
padding-top: 4px; padding-top: 4px;
padding-bottom: 4px; padding-bottom: 4px;
} }
.element, .constraint { .elt, .cst {
display: flex; display: flex;
flex-grow: 1; flex-grow: 1;
padding-left: 8px; padding-left: 8px;
padding-right: 8px; padding-right: 8px;
} }
.element-switch { .elt-switch {
width: 18px; width: 18px;
padding-left: 2px; padding-left: 2px;
text-align: center; text-align: center;
} }
details:has(li) .element-switch::after { details:has(li) .elt-switch::after {
content: '▸'; content: '▸';
} }
details[open]:has(li) .element-switch::after { details[open]:has(li) .elt-switch::after {
content: '▾'; content: '▾';
} }
.element-label { .elt-label {
flex-grow: 1; flex-grow: 1;
} }
.constraint-label { .cst-label {
flex-grow: 1; flex-grow: 1;
} }
.element-representation { .elt-rep {
display: flex; display: flex;
} }
.element-representation > div { .elt-rep > div {
padding: 2px 0px 0px 0px; padding: 2px 0px 0px 0px;
font-size: 10pt; font-size: 10pt;
font-variant-numeric: tabular-nums; font-variant-numeric: tabular-nums;
@ -123,27 +107,27 @@ details[open]:has(li) .element-switch::after {
width: 56px; width: 56px;
} }
.constraint { .cst {
font-style: italic; font-style: italic;
} }
.constraint.invalid { .cst.invalid {
color: var(--text-invalid); color: #f58fc2;
} }
.constraint > input[type=checkbox] { .cst > input[type=checkbox] {
margin: 0px 8px 0px 0px; margin: 0px 8px 0px 0px;
} }
.constraint > input[type=text] { .cst > input[type=text] {
color: inherit; color: inherit;
background-color: inherit; background-color: inherit;
border: 1px solid var(--border); border: 1px solid #555;
border-radius: 2px; border-radius: 2px;
} }
.constraint.invalid > input[type=text] { .cst.invalid > input[type=text] {
border-color: var(--border-invalid); border-color: #70495c;
} }
.status { .status {
@ -156,7 +140,7 @@ details[open]:has(li) .element-switch::after {
.invalid > .status::after, details:has(.invalid):not([open]) .status::after { .invalid > .status::after, details:has(.invalid):not([open]) .status::after {
content: '⚠'; content: '⚠';
color: var(--text-invalid); color: #f58fc2;
} }
/* display */ /* display */
@ -165,11 +149,11 @@ canvas {
float: left; float: left;
margin-left: 20px; margin-left: 20px;
margin-top: 20px; margin-top: 20px;
background-color: var(--display-background); background-color: #020202;
border: 1px solid var(--border); border: 1px solid #555;
border-radius: 16px; border-radius: 16px;
} }
canvas:focus { canvas:focus {
border-color: var(--border-focus); border-color: #aaa;
} }

View File

@ -1,8 +1,9 @@
# based on "Enabling print statements in Cargo tests", by Jon Almeida # run all Cargo examples, as described here:
# #
# https://jonalmeida.com/posts/2015/01/23/print-cargo/ # Karol Kuczmarski. "Add examples to your Rust libraries"
# http://xion.io/post/code/rust-examples.html
# #
cargo test -- --nocapture engine::tests::irisawa_hexlet_test cargo run --example irisawa-hexlet
cargo test -- --nocapture engine::tests::three_spheres_example cargo run --example three-spheres
cargo test -- --nocapture engine::tests::point_on_sphere_example cargo run --example point-on-sphere

View File

@ -4,8 +4,6 @@ use web_sys::{console, wasm_bindgen::JsValue};
use crate::{engine, AppState, assembly::{Assembly, Constraint, Element}}; use crate::{engine, AppState, assembly::{Assembly, Constraint, Element}};
/* DEBUG */ /* DEBUG */
// load an example assembly for testing. this code will be removed once we've
// built a more formal test assembly system
fn load_gen_assemb(assembly: &Assembly) { fn load_gen_assemb(assembly: &Assembly) {
let _ = assembly.try_insert_element( let _ = assembly.try_insert_element(
Element::new( Element::new(
@ -58,8 +56,6 @@ fn load_gen_assemb(assembly: &Assembly) {
} }
/* DEBUG */ /* DEBUG */
// load an example assembly for testing. this code will be removed once we've
// built a more formal test assembly system
fn load_low_curv_assemb(assembly: &Assembly) { fn load_low_curv_assemb(assembly: &Assembly) {
let a = 0.75_f64.sqrt(); let a = 0.75_f64.sqrt();
let _ = assembly.try_insert_element( let _ = assembly.try_insert_element(
@ -177,27 +173,27 @@ pub fn AddRemove() -> View {
} }
) { "+" } ) { "+" }
button( button(
class="emoji", /* KLUDGE */ // for convenience, we're using an emoji as a temporary icon for this button class="emoji", /* KLUDGE */
disabled={ disabled={
let state = use_context::<AppState>(); let state = use_context::<AppState>();
state.selection.with(|sel| sel.len() != 2) state.selection.with(|sel| sel.len() != 2)
}, },
on:click=|_| { on:click=|_| {
let state = use_context::<AppState>(); let state = use_context::<AppState>();
let subjects = state.selection.with( let args = state.selection.with(
|sel| { |sel| {
let subject_vec: Vec<_> = sel.into_iter().collect(); let arg_vec: Vec<_> = sel.into_iter().collect();
(subject_vec[0].clone(), subject_vec[1].clone()) (arg_vec[0].clone(), arg_vec[1].clone())
} }
); );
let lorentz_prod = create_signal(0.0); let rep = create_signal(0.0);
let lorentz_prod_valid = create_signal(false); let rep_valid = create_signal(false);
let active = create_signal(true); let active = create_signal(true);
state.assembly.insert_constraint(Constraint { state.assembly.insert_constraint(Constraint {
subjects: subjects, args: args,
lorentz_prod: lorentz_prod, rep: rep,
lorentz_prod_text: create_signal(String::new()), rep_text: create_signal(String::new()),
lorentz_prod_valid: lorentz_prod_valid, rep_valid: rep_valid,
active: active, active: active,
}); });
state.selection.update(|sel| sel.clear()); state.selection.update(|sel| sel.clear());
@ -209,10 +205,10 @@ pub fn AddRemove() -> View {
for (_, cst) in csts.into_iter() { for (_, cst) in csts.into_iter() {
console::log_5( console::log_5(
&JsValue::from(" "), &JsValue::from(" "),
&JsValue::from(cst.subjects.0), &JsValue::from(cst.args.0),
&JsValue::from(cst.subjects.1), &JsValue::from(cst.args.1),
&JsValue::from(":"), &JsValue::from(":"),
&JsValue::from(cst.lorentz_prod.get_untracked()) &JsValue::from(cst.rep.get_untracked())
); );
} }
}); });
@ -221,19 +217,18 @@ pub fn AddRemove() -> View {
// and valid, or is edited while active and valid // and valid, or is edited while active and valid
create_effect(move || { create_effect(move || {
console::log_1(&JsValue::from( console::log_1(&JsValue::from(
format!("Constraint ({}, {}) updated", subjects.0, subjects.1) format!("Constraint ({}, {}) updated", args.0, args.1)
)); ));
lorentz_prod.track(); rep.track();
if active.get() && lorentz_prod_valid.get() { if active.get() && rep_valid.get() {
state.assembly.realize(); state.assembly.realize();
} }
}); });
} }
) { "🔗" } ) { "🔗" }
select(bind:value=assembly_name) { /* DEBUG */ // example assembly chooser select(bind:value=assembly_name) { /* DEBUG */
option(value="general") { "General" } option(value="general") { "General" }
option(value="low-curv") { "Low-curvature" } option(value="low-curv") { "Low-curvature" }
option(value="empty") { "Empty" }
} }
} }
} }

View File

@ -1,68 +1,38 @@
use nalgebra::{DMatrix, DVector}; use nalgebra::{DMatrix, DVector};
use rustc_hash::FxHashMap; use rustc_hash::FxHashMap;
use slab::Slab; use slab::Slab;
use std::{collections::BTreeSet, sync::atomic::{AtomicU64, Ordering}}; use std::collections::BTreeSet;
use sycamore::prelude::*; use sycamore::prelude::*;
use web_sys::{console, wasm_bindgen::JsValue}; /* DEBUG */ use web_sys::{console, wasm_bindgen::JsValue}; /* DEBUG */
use crate::engine::{realize_gram, PartialMatrix}; use crate::engine::{realize_gram, PartialMatrix};
// the types of the keys we use to access an assembly's elements and constraints
pub type ElementKey = usize;
pub type ConstraintKey = usize;
pub type ElementColor = [f32; 3];
/* KLUDGE */
// we should reconsider this design when we build a system for switching between
// assemblies. at that point, we might want to switch to hierarchical keys,
// where each each element has a key that identifies it within its assembly and
// each assembly has a key that identifies it within the sesssion
static NEXT_ELEMENT_SERIAL: AtomicU64 = AtomicU64::new(0);
#[derive(Clone, PartialEq)] #[derive(Clone, PartialEq)]
pub struct Element { pub struct Element {
pub id: String, pub id: String,
pub label: String, pub label: String,
pub color: ElementColor, pub color: [f32; 3],
pub representation: Signal<DVector<f64>>, pub rep: Signal<DVector<f64>>,
pub constraints: Signal<BTreeSet<ConstraintKey>>, pub constraints: Signal<BTreeSet<usize>>,
// a serial number, assigned by `Element::new`, that uniquely identifies // internal properties, not reflected in any view
// each element pub index: usize
pub serial: u64,
// the configuration matrix column index that was assigned to this element
// last time the assembly was realized
column_index: usize
} }
impl Element { impl Element {
pub fn new( pub fn new(
id: String, id: String,
label: String, label: String,
color: ElementColor, color: [f32; 3],
representation: DVector<f64> rep: DVector<f64>
) -> Element { ) -> Element {
// take the next serial number, panicking if that was the last number we
// had left. the technique we use to panic on overflow is taken from
// _Rust Atomics and Locks_, by Mara Bos
//
// https://marabos.nl/atomics/atomics.html#example-handle-overflow
//
let serial = NEXT_ELEMENT_SERIAL.fetch_update(
Ordering::SeqCst, Ordering::SeqCst,
|serial| serial.checked_add(1)
).expect("Out of serial numbers for elements");
Element { Element {
id: id, id: id,
label: label, label: label,
color: color, color: color,
representation: create_signal(representation), rep: create_signal(rep),
constraints: create_signal(BTreeSet::default()), constraints: create_signal(BTreeSet::default()),
serial: serial, index: 0
column_index: 0
} }
} }
} }
@ -70,10 +40,10 @@ impl Element {
#[derive(Clone)] #[derive(Clone)]
pub struct Constraint { pub struct Constraint {
pub subjects: (ElementKey, ElementKey), pub args: (usize, usize),
pub lorentz_prod: Signal<f64>, pub rep: Signal<f64>,
pub lorentz_prod_text: Signal<String>, pub rep_text: Signal<String>,
pub lorentz_prod_valid: Signal<bool>, pub rep_valid: Signal<bool>,
pub active: Signal<bool> pub active: Signal<bool>
} }
@ -85,7 +55,7 @@ pub struct Assembly {
pub constraints: Signal<Slab<Constraint>>, pub constraints: Signal<Slab<Constraint>>,
// indexing // indexing
pub elements_by_id: Signal<FxHashMap<String, ElementKey>> pub elements_by_id: Signal<FxHashMap<String, usize>>
} }
impl Assembly { impl Assembly {
@ -141,13 +111,13 @@ impl Assembly {
} }
pub fn insert_constraint(&self, constraint: Constraint) { pub fn insert_constraint(&self, constraint: Constraint) {
let subjects = constraint.subjects; let args = constraint.args;
let key = self.constraints.update(|csts| csts.insert(constraint)); let key = self.constraints.update(|csts| csts.insert(constraint));
let subject_constraints = self.elements.with( let arg_constraints = self.elements.with(
|elts| (elts[subjects.0].constraints, elts[subjects.1].constraints) |elts| (elts[args.0].constraints, elts[args.1].constraints)
); );
subject_constraints.0.update(|csts| csts.insert(key)); arg_constraints.0.update(|csts| csts.insert(key));
subject_constraints.1.update(|csts| csts.insert(key)); arg_constraints.1.update(|csts| csts.insert(key));
} }
// --- realization --- // --- realization ---
@ -156,7 +126,7 @@ impl Assembly {
// index the elements // index the elements
self.elements.update_silent(|elts| { self.elements.update_silent(|elts| {
for (index, (_, elt)) in elts.into_iter().enumerate() { for (index, (_, elt)) in elts.into_iter().enumerate() {
elt.column_index = index; elt.index = index;
} }
}); });
@ -166,11 +136,11 @@ impl Assembly {
let mut gram_to_be = PartialMatrix::new(); let mut gram_to_be = PartialMatrix::new();
self.constraints.with_untracked(|csts| { self.constraints.with_untracked(|csts| {
for (_, cst) in csts { for (_, cst) in csts {
if cst.active.get_untracked() && cst.lorentz_prod_valid.get_untracked() { if cst.active.get_untracked() && cst.rep_valid.get_untracked() {
let subjects = cst.subjects; let args = cst.args;
let row = elts[subjects.0].column_index; let row = elts[args.0].index;
let col = elts[subjects.1].column_index; let col = elts[args.1].index;
gram_to_be.push_sym(row, col, cst.lorentz_prod.get_untracked()); gram_to_be.push_sym(row, col, cst.rep.get_untracked());
} }
} }
}); });
@ -179,9 +149,9 @@ impl Assembly {
// Gram matrix // Gram matrix
let mut guess_to_be = DMatrix::<f64>::zeros(5, elts.len()); let mut guess_to_be = DMatrix::<f64>::zeros(5, elts.len());
for (_, elt) in elts { for (_, elt) in elts {
let index = elt.column_index; let index = elt.index;
gram_to_be.push_sym(index, index, 1.0); gram_to_be.push_sym(index, index, 1.0);
guess_to_be.set_column(index, &elt.representation.get_clone_untracked()); guess_to_be.set_column(index, &elt.rep.get_clone_untracked());
} }
(gram_to_be, guess_to_be) (gram_to_be, guess_to_be)
@ -224,8 +194,8 @@ impl Assembly {
if success { if success {
// read out the solution // read out the solution
for (_, elt) in self.elements.get_clone_untracked() { for (_, elt) in self.elements.get_clone_untracked() {
elt.representation.update( elt.rep.update(
|rep| rep.set_column(0, &config.column(elt.column_index)) |rep| rep.set_column(0, &config.column(elt.index))
); );
} }
} }

View File

@ -105,7 +105,7 @@ pub fn Display() -> View {
create_effect(move || { create_effect(move || {
state.assembly.elements.with(|elts| { state.assembly.elements.with(|elts| {
for (_, elt) in elts { for (_, elt) in elts {
elt.representation.track(); elt.rep.track();
} }
}); });
state.selection.track(); state.selection.track();
@ -311,7 +311,7 @@ pub fn Display() -> View {
// representation vectors in world coordinates // representation vectors in world coordinates
elts.iter().map( elts.iter().map(
|(_, elt)| elt.representation.with(|rep| &assembly_to_world * rep) |(_, elt)| elt.rep.with(|rep| &assembly_to_world * rep)
).collect::<Vec<_>>(), ).collect::<Vec<_>>(),
// colors // colors

View File

@ -4,7 +4,6 @@ use web_sys::{console, wasm_bindgen::JsValue}; /* DEBUG */
// --- elements --- // --- elements ---
#[cfg(test)]
pub fn point(x: f64, y: f64, z: f64) -> DVector<f64> { pub fn point(x: f64, y: f64, z: f64) -> DVector<f64> {
DVector::from_column_slice(&[x, y, z, 0.5, 0.5*(x*x + y*y + z*z)]) DVector::from_column_slice(&[x, y, z, 0.5, 0.5*(x*x + y*y + z*z)])
} }
@ -113,7 +112,7 @@ impl DescentHistory {
// the Lorentz form // the Lorentz form
lazy_static! { lazy_static! {
static ref Q: DMatrix<f64> = DMatrix::from_row_slice(5, 5, &[ pub static ref Q: DMatrix<f64> = DMatrix::from_row_slice(5, 5, &[
1.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0,
0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0,
0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0,
@ -277,12 +276,79 @@ pub fn realize_gram(
// --- tests --- // --- tests ---
#[cfg(test)] // this problem is from a sangaku by Irisawa Shintarō Hiroatsu. the article
mod tests { // below includes a nice translation of the problem statement, which was
// recorded in Uchida Itsumi's book _Kokon sankan_ (_Mathematics, Past and
// Present_)
//
// "Japan's 'Wasan' Mathematical Tradition", by Abe Haruki
// https://www.nippon.com/en/japan-topics/c12801/
//
#[cfg(feature = "irisawa")]
pub mod irisawa {
use std::{array, f64::consts::PI}; use std::{array, f64::consts::PI};
use super::*; use super::*;
pub fn realize_irisawa_hexlet(scaled_tol: f64) -> (DMatrix<f64>, bool, DescentHistory) {
let gram = {
let mut gram_to_be = PartialMatrix::new();
for s in 0..9 {
// each sphere is represented by a spacelike vector
gram_to_be.push_sym(s, s, 1.0);
// the circumscribing sphere is tangent to all of the other
// spheres, with matching orientation
if s > 0 {
gram_to_be.push_sym(0, s, 1.0);
}
if s > 2 {
// each chain sphere is tangent to the "sun" and "moon"
// spheres, with opposing orientation
for n in 1..3 {
gram_to_be.push_sym(s, n, -1.0);
}
// each chain sphere is tangent to the next chain sphere,
// with opposing orientation
let s_next = 3 + (s-2) % 6;
gram_to_be.push_sym(s, s_next, -1.0);
}
}
gram_to_be
};
let guess = DMatrix::from_columns(
[
sphere(0.0, 0.0, 0.0, 15.0),
sphere(0.0, 0.0, -9.0, 5.0),
sphere(0.0, 0.0, 11.0, 3.0)
].into_iter().chain(
(1..=6).map(
|k| {
let ang = (k as f64) * PI/3.0;
sphere(9.0 * ang.cos(), 9.0 * ang.sin(), 0.0, 2.5)
}
)
).collect::<Vec<_>>().as_slice()
);
// the frozen entries fix the radii of the circumscribing sphere, the
// "sun" and "moon" spheres, and one of the chain spheres
let frozen: [(usize, usize); 4] = array::from_fn(|k| (3, k));
realize_gram(
&gram, guess, &frozen,
scaled_tol, 0.5, 0.9, 1.1, 200, 110
)
}
}
#[cfg(test)]
mod tests {
use super::{*, irisawa::realize_irisawa_hexlet};
#[test] #[test]
fn sub_proj_test() { fn sub_proj_test() {
let target = PartialMatrix(vec![ let target = PartialMatrix(vec![
@ -328,213 +394,17 @@ mod tests {
assert!(state.loss.abs() < f64::EPSILON); assert!(state.loss.abs() < f64::EPSILON);
} }
// this problem is from a sangaku by Irisawa Shintarō Hiroatsu. the article
// below includes a nice translation of the problem statement, which was
// recorded in Uchida Itsumi's book _Kokon sankan_ (_Mathematics, Past and
// Present_)
//
// "Japan's 'Wasan' Mathematical Tradition", by Abe Haruki
// https://www.nippon.com/en/japan-topics/c12801/
//
#[test] #[test]
fn irisawa_hexlet_test() { fn irisawa_hexlet_test() {
let gram = PartialMatrix({ // solve Irisawa's problem
let mut entries = Vec::<MatrixEntry>::new();
for s in 0..9 {
// each sphere is represented by a spacelike vector
entries.push(MatrixEntry { index: (s, s), value: 1.0 });
// the circumscribing sphere is tangent to all of the other
// spheres, with matching orientation
if s > 0 {
entries.push(MatrixEntry { index: (0, s), value: 1.0 });
entries.push(MatrixEntry { index: (s, 0), value: 1.0 });
}
if s > 2 {
// each chain sphere is tangent to the "sun" and "moon"
// spheres, with opposing orientation
for n in 1..3 {
entries.push(MatrixEntry { index: (s, n), value: -1.0 });
entries.push(MatrixEntry { index: (n, s), value: -1.0 });
}
// each chain sphere is tangent to the next chain sphere,
// with opposing orientation
let s_next = 3 + (s-2) % 6;
entries.push(MatrixEntry { index: (s, s_next), value: -1.0 });
entries.push(MatrixEntry { index: (s_next, s), value: -1.0 });
}
}
entries
});
let guess = DMatrix::from_columns(
[
sphere(0.0, 0.0, 0.0, 15.0),
sphere(0.0, 0.0, -9.0, 5.0),
sphere(0.0, 0.0, 11.0, 3.0)
].into_iter().chain(
(1..=6).map(
|k| {
let ang = (k as f64) * PI/3.0;
sphere(9.0 * ang.cos(), 9.0 * ang.sin(), 0.0, 2.5)
}
)
).collect::<Vec<_>>().as_slice()
);
let frozen: [(usize, usize); 4] = array::from_fn(|k| (3, k));
const SCALED_TOL: f64 = 1.0e-12; const SCALED_TOL: f64 = 1.0e-12;
let (config, success, history) = realize_gram( let (config, _, _) = realize_irisawa_hexlet(SCALED_TOL);
&gram, guess, &frozen,
SCALED_TOL, 0.5, 0.9, 1.1, 200, 110 // check against Irisawa's solution
);
let entry_tol = SCALED_TOL.sqrt(); let entry_tol = SCALED_TOL.sqrt();
let solution_diams = [30.0, 10.0, 6.0, 5.0, 15.0, 10.0, 3.75, 2.5, 2.0 + 8.0/11.0]; let solution_diams = [30.0, 10.0, 6.0, 5.0, 15.0, 10.0, 3.75, 2.5, 2.0 + 8.0/11.0];
for (k, diam) in solution_diams.into_iter().enumerate() { for (k, diam) in solution_diams.into_iter().enumerate() {
assert!((config[(3, k)] - 1.0 / diam).abs() < entry_tol); assert!((config[(3, k)] - 1.0 / diam).abs() < entry_tol);
} }
print!("\nCompleted Gram matrix:{}", config.tr_mul(&*Q) * &config);
if success {
println!("Target accuracy achieved!");
} else {
println!("Failed to reach target accuracy");
}
println!("Steps: {}", history.scaled_loss.len() - 1);
println!("Loss: {}", history.scaled_loss.last().unwrap());
if success {
println!("\nChain diameters:");
println!(" {} sun (given)", 1.0 / config[(3, 3)]);
for k in 4..9 {
println!(" {} sun", 1.0 / config[(3, k)]);
}
}
println!("\nStep │ Loss\n─────┼────────────────────────────────");
for (step, scaled_loss) in history.scaled_loss.into_iter().enumerate() {
println!("{:<4}{}", step, scaled_loss);
}
}
// --- process inspection examples ---
// these tests are meant for human inspection, not automated use. run them
// one at a time in `--nocapture` mode and read through the results and
// optimization histories that they print out. the `run-examples` script
// will run all of them
#[test]
fn three_spheres_example() {
let gram = PartialMatrix({
let mut entries = Vec::<MatrixEntry>::new();
for j in 0..3 {
for k in 0..3 {
entries.push(MatrixEntry {
index: (j, k),
value: if j == k { 1.0 } else { -1.0 }
});
}
}
entries
});
let guess = {
let a: f64 = 0.75_f64.sqrt();
DMatrix::from_columns(&[
sphere(1.0, 0.0, 0.0, 1.0),
sphere(-0.5, a, 0.0, 1.0),
sphere(-0.5, -a, 0.0, 1.0)
])
};
println!();
let (config, success, history) = realize_gram(
&gram, guess, &[],
1.0e-12, 0.5, 0.9, 1.1, 200, 110
);
print!("\nCompleted Gram matrix:{}", config.tr_mul(&*Q) * &config);
if success {
println!("Target accuracy achieved!");
} else {
println!("Failed to reach target accuracy");
}
println!("Steps: {}", history.scaled_loss.len() - 1);
println!("Loss: {}", history.scaled_loss.last().unwrap());
println!("\nStep │ Loss\n─────┼────────────────────────────────");
for (step, scaled_loss) in history.scaled_loss.into_iter().enumerate() {
println!("{:<4}{}", step, scaled_loss);
}
}
#[test]
fn point_on_sphere_example() {
let gram = PartialMatrix({
let mut entries = Vec::<MatrixEntry>::new();
for j in 0..2 {
for k in 0..2 {
entries.push(MatrixEntry {
index: (j, k),
value: if (j, k) == (1, 1) { 1.0 } else { 0.0 }
});
}
}
entries
});
let guess = DMatrix::from_columns(&[
point(0.0, 0.0, 2.0),
sphere(0.0, 0.0, 0.0, 1.0)
]);
let frozen = [(3, 0)];
println!();
let (config, success, history) = realize_gram(
&gram, guess, &frozen,
1.0e-12, 0.5, 0.9, 1.1, 200, 110
);
print!("\nCompleted Gram matrix:{}", config.tr_mul(&*Q) * &config);
print!("Configuration:{}", config);
if success {
println!("Target accuracy achieved!");
} else {
println!("Failed to reach target accuracy");
}
println!("Steps: {}", history.scaled_loss.len() - 1);
println!("Loss: {}", history.scaled_loss.last().unwrap());
println!("\nStep │ Loss\n─────┼────────────────────────────────");
for (step, scaled_loss) in history.scaled_loss.into_iter().enumerate() {
println!("{:<4}{}", step, scaled_loss);
}
}
/* TO DO */
// --- new test placed here to avoid merge conflict ---
// at the frozen indices, the optimization steps should have exact zeros,
// and the realized configuration should match the initial guess
#[test]
fn frozen_entry_test() {
let gram = {
let mut gram_to_be = PartialMatrix::new();
for j in 0..2 {
for k in j..2 {
gram_to_be.push_sym(j, k, if (j, k) == (1, 1) { 1.0 } else { 0.0 });
}
}
gram_to_be
};
let guess = DMatrix::from_columns(&[
point(0.0, 0.0, 2.0),
sphere(0.0, 0.0, 0.0, 1.0)
]);
let frozen = [(3, 0), (3, 1)];
println!();
let (config, success, history) = realize_gram(
&gram, guess.clone(), &frozen,
1.0e-12, 0.5, 0.9, 1.1, 200, 110
);
assert_eq!(success, true);
for base_step in history.base_step.into_iter() {
for index in frozen {
assert_eq!(base_step[index], 0.0);
}
}
for index in frozen {
assert_eq!(config[index], guess[index]);
}
} }
} }

1
app-proto/src/lib.rs Normal file
View File

@ -0,0 +1 @@
pub mod engine;

View File

@ -8,14 +8,14 @@ use rustc_hash::FxHashSet;
use sycamore::prelude::*; use sycamore::prelude::*;
use add_remove::AddRemove; use add_remove::AddRemove;
use assembly::{Assembly, ElementKey}; use assembly::Assembly;
use display::Display; use display::Display;
use outline::Outline; use outline::Outline;
#[derive(Clone)] #[derive(Clone)]
struct AppState { struct AppState {
assembly: Assembly, assembly: Assembly,
selection: Signal<FxHashSet<ElementKey>> selection: Signal<FxHashSet<usize>>
} }
impl AppState { impl AppState {

View File

@ -8,7 +8,7 @@ use web_sys::{
wasm_bindgen::JsCast wasm_bindgen::JsCast
}; };
use crate::{AppState, assembly, assembly::{Constraint, ConstraintKey, ElementKey}}; use crate::{AppState, assembly, assembly::Constraint};
// an editable view of the Lorentz product representing a constraint // an editable view of the Lorentz product representing a constraint
#[component(inline_props)] #[component(inline_props)]
@ -16,15 +16,15 @@ fn LorentzProductInput(constraint: Constraint) -> View {
view! { view! {
input( input(
r#type="text", r#type="text",
bind:value=constraint.lorentz_prod_text, bind:value=constraint.rep_text,
on:change=move |event: Event| { on:change=move |event: Event| {
let target: HtmlInputElement = event.target().unwrap().unchecked_into(); let target: HtmlInputElement = event.target().unwrap().unchecked_into();
match target.value().parse::<f64>() { match target.value().parse::<f64>() {
Ok(lorentz_prod) => batch(|| { Ok(rep) => batch(|| {
constraint.lorentz_prod.set(lorentz_prod); constraint.rep.set(rep);
constraint.lorentz_prod_valid.set(true); constraint.rep_valid.set(true);
}), }),
Err(_) => constraint.lorentz_prod_valid.set(false) Err(_) => constraint.rep_valid.set(false)
}; };
} }
) )
@ -33,23 +33,23 @@ fn LorentzProductInput(constraint: Constraint) -> View {
// a list item that shows a constraint in an outline view of an element // a list item that shows a constraint in an outline view of an element
#[component(inline_props)] #[component(inline_props)]
fn ConstraintOutlineItem(constraint_key: ConstraintKey, element_key: ElementKey) -> View { fn ConstraintOutlineItem(constraint_key: usize, element_key: usize) -> View {
let state = use_context::<AppState>(); let state = use_context::<AppState>();
let assembly = &state.assembly; let assembly = &state.assembly;
let constraint = assembly.constraints.with(|csts| csts[constraint_key].clone()); let constraint = assembly.constraints.with(|csts| csts[constraint_key].clone());
let other_subject = if constraint.subjects.0 == element_key { let other_arg = if constraint.args.0 == element_key {
constraint.subjects.1 constraint.args.1
} else { } else {
constraint.subjects.0 constraint.args.0
}; };
let other_subject_label = assembly.elements.with(|elts| elts[other_subject].label.clone()); let other_arg_label = assembly.elements.with(|elts| elts[other_arg].label.clone());
let class = constraint.lorentz_prod_valid.map( let class = constraint.rep_valid.map(
|&lorentz_prod_valid| if lorentz_prod_valid { "constraint" } else { "constraint invalid" } |&rep_valid| if rep_valid { "cst" } else { "cst invalid" }
); );
view! { view! {
li(class=class.get()) { li(class=class.get()) {
input(r#type="checkbox", bind:checked=constraint.active) input(r#type="checkbox", bind:checked=constraint.active)
div(class="constraint-label") { (other_subject_label) } div(class="cst-label") { (other_arg_label) }
LorentzProductInput(constraint=constraint) LorentzProductInput(constraint=constraint)
div(class="status") div(class="status")
} }
@ -58,13 +58,13 @@ fn ConstraintOutlineItem(constraint_key: ConstraintKey, element_key: ElementKey)
// a list item that shows an element in an outline view of an assembly // a list item that shows an element in an outline view of an assembly
#[component(inline_props)] #[component(inline_props)]
fn ElementOutlineItem(key: ElementKey, element: assembly::Element) -> View { fn ElementOutlineItem(key: usize, element: assembly::Element) -> View {
let state = use_context::<AppState>(); let state = use_context::<AppState>();
let class = state.selection.map( let class = state.selection.map(
move |sel| if sel.contains(&key) { "selected" } else { "" } move |sel| if sel.contains(&key) { "selected" } else { "" }
); );
let label = element.label.clone(); let label = element.label.clone();
let rep_components = element.representation.map( let rep_components = element.rep.map(
|rep| rep.iter().map( |rep| rep.iter().map(
|u| format!("{:.3}", u).replace("-", "\u{2212}") |u| format!("{:.3}", u).replace("-", "\u{2212}")
).collect() ).collect()
@ -115,11 +115,11 @@ fn ElementOutlineItem(key: ElementKey, element: assembly::Element) -> View {
} }
) { ) {
div( div(
class="element-switch", class="elt-switch",
on:click=|event: MouseEvent| event.stop_propagation() on:click=|event: MouseEvent| event.stop_propagation()
) )
div( div(
class="element", class="elt",
on:click={ on:click={
move |event: MouseEvent| { move |event: MouseEvent| {
if event.shift_key() { if event.shift_key() {
@ -139,8 +139,8 @@ fn ElementOutlineItem(key: ElementKey, element: assembly::Element) -> View {
} }
} }
) { ) {
div(class="element-label") { (label) } div(class="elt-label") { (label) }
div(class="element-representation") { div(class="elt-rep") {
Indexed( Indexed(
list=rep_components, list=rep_components,
view=|coord_str| view! { view=|coord_str| view! {
@ -200,7 +200,7 @@ pub fn Outline() -> View {
view=|(key, elt)| view! { view=|(key, elt)| view! {
ElementOutlineItem(key=key, element=elt) ElementOutlineItem(key=key, element=elt)
}, },
key=|(_, elt)| elt.serial key=|(key, _)| key.clone()
) )
} }
} }

View File

@ -41,25 +41,3 @@ I will have to work out formulas for the Euclidean distance between two entities
In this vein, it seems as though if J1 and J2 are the reps of two points, then Q(J1,J2) = d^2/2. So then the sphere centered at J1 through J2 is (J1-(2Q(J1,J2),0,0,0,0))/sqrt(2Q(J1,J2)). Ugh has a sqrt in it. Similarly for sphere centered at J3 through J2, (J3-(2Q(J3,J2),0000))/sqrt(2Q(J3,J2)). J1,J2,J3 are collinear if these spheres are tangent, i.e. if those vectors have Q-inner-product 1, which is to say Q(J1,J3) - Q(J1,J2) - Q(J3,J2) = 2sqrt(Q(J1,J2)Q(J2,J3)). But maybe that's not the simplest way of putting it. After all, we can just say that the cross-product of the two differences is 0; that has no square roots in it. In this vein, it seems as though if J1 and J2 are the reps of two points, then Q(J1,J2) = d^2/2. So then the sphere centered at J1 through J2 is (J1-(2Q(J1,J2),0,0,0,0))/sqrt(2Q(J1,J2)). Ugh has a sqrt in it. Similarly for sphere centered at J3 through J2, (J3-(2Q(J3,J2),0000))/sqrt(2Q(J3,J2)). J1,J2,J3 are collinear if these spheres are tangent, i.e. if those vectors have Q-inner-product 1, which is to say Q(J1,J3) - Q(J1,J2) - Q(J3,J2) = 2sqrt(Q(J1,J2)Q(J2,J3)). But maybe that's not the simplest way of putting it. After all, we can just say that the cross-product of the two differences is 0; that has no square roots in it.
One conceivable way to canonicalize lines is to use the *perpendicular* plane that goes through the origin, that's uniquely defined, and anyway just amounts to I = (0,0,d) where d is the ordinary direction vector of the line; and a point J in that plane that the line goes through, which just amounts to J=(r^2,1,E) with Q(I,J) = 0, i.e. E\dot d = 0. It's also the point on the line closest to the origin. The reason that we don't usually use that point as the companion to the direction vector is that the resulting set of six coordinates is not homogeneous. But here that's not an issue, since we have our standard point coordinates and plane coordinates; and for a plane through the origin, only two of the direction coordinates are really free, and then we have the one dot-product relation, so only two of the point coordinates are really free, giving us the correct dimensionality of 4 for the set of lines. So in some sense this says that we could take naively as coordinates for a line the projection of the unit direction vector to the xy plane and the projection of the line's closest point to the origin to the xy plane. That doesn't seem to have any weird gimbal locks or discontinuities or anything. And with these coordinates, you can test if the point E=x,y,z is on the line (dx,dy,cx,cy) by extending (dx,dy) to d via dz = sqrt(1-dx^2 - dy^2), extending (cx,cy) to c by determining cz via d\dot c = 0, and then checking if d\cross(E-c) = 0. And you can see if two lines are parallel just by checking if they have the same direction vector, and if not, you can see if they are coplanar by projecting both of their closest points perpendicularly onto the line in the direction of the cross product of their directions, and if the projections match they are coplanar. One conceivable way to canonicalize lines is to use the *perpendicular* plane that goes through the origin, that's uniquely defined, and anyway just amounts to I = (0,0,d) where d is the ordinary direction vector of the line; and a point J in that plane that the line goes through, which just amounts to J=(r^2,1,E) with Q(I,J) = 0, i.e. E\dot d = 0. It's also the point on the line closest to the origin. The reason that we don't usually use that point as the companion to the direction vector is that the resulting set of six coordinates is not homogeneous. But here that's not an issue, since we have our standard point coordinates and plane coordinates; and for a plane through the origin, only two of the direction coordinates are really free, and then we have the one dot-product relation, so only two of the point coordinates are really free, giving us the correct dimensionality of 4 for the set of lines. So in some sense this says that we could take naively as coordinates for a line the projection of the unit direction vector to the xy plane and the projection of the line's closest point to the origin to the xy plane. That doesn't seem to have any weird gimbal locks or discontinuities or anything. And with these coordinates, you can test if the point E=x,y,z is on the line (dx,dy,cx,cy) by extending (dx,dy) to d via dz = sqrt(1-dx^2 - dy^2), extending (cx,cy) to c by determining cz via d\dot c = 0, and then checking if d\cross(E-c) = 0. And you can see if two lines are parallel just by checking if they have the same direction vector, and if not, you can see if they are coplanar by projecting both of their closest points perpendicularly onto the line in the direction of the cross product of their directions, and if the projections match they are coplanar.
#### Engine Conventions
The coordinate conventions used in the engine are different from the ones used in these notes. Marking the engine vectors and coordinates with $'$, we have
$$I' = (x', y', z', b', c'),$$
where
$$
\begin{align*}
x' & = x & b' & = b/2 \\
y' & = y & c' & = c/2. \\
z' & = z
\end{align*}
$$
The engine uses the quadratic form $Q' = -Q$, which is expressed in engine coordinates as
$$Q'(I'_1, I'_2) = x'_1 x'_2 + y'_1 y'_2 + z'_1 z'_2 - 2(b'_1c'_2 + c'_1 b'_2).$$
In the `engine` module, the matrix of $Q'$ is encoded in the lazy static variable `Q`.
In the engine's coordinate conventions, a sphere with radius $r > 0$ centered on $P = (P_x, P_y, P_z)$ is represented by the vector
$$I'_s = \left(\frac{P_x}{r}, \frac{P_y}{r}, \frac{P_z}{r}, \frac1{2r}, \frac{\|P\|^2 - r^2}{2r}\right),$$
which has the normalization $Q'(I'_s, I'_s) = 1$. The point $P$ is represented by the vector
$$I'_P = \left(P_x, P_y, P_z, \frac{1}{2}, \frac{\|P\|^2}{2}\right).$$
In the `engine` module, these formulas are encoded in the `sphere` and `point` functions.