Compare commits

..

7 Commits

Author SHA1 Message Date
Aaron Fenyes
74529048de Start interface to Macaulay2
I did this to try out Macaulay2's "triangularize" function, but that
turns out to use Maple for rings with more than three variables.
2024-02-16 12:47:06 -08:00
Aaron Fenyes
3170a933e4 Clean up example of three mutually tangent spheres 2024-02-15 17:16:37 -08:00
Aaron Fenyes
f2000e5731 Test different sign patterns for cosines
It seems like there are real solutions if and only if the product of the
cosines is positive.
2024-02-15 16:25:09 -08:00
Aaron Fenyes
ba365174d3 Find real solutions for three mutually tangent spheres
I'm not sure why the solver wasn't working before. It might've been just
an unlucky random number draw.
2024-02-15 16:16:06 -08:00
Aaron Fenyes
ae5db0f9ea Make results reproducible 2024-02-15 16:00:46 -08:00
Aaron Fenyes
8d8bc9162c Store elements in arrays to keep order stable
This seems to restore reproducibility.
2024-02-15 15:42:26 -08:00
Aaron Fenyes
291d5c8ff6 Study mutually tangent spheres with two fixed 2024-02-15 13:28:01 -08:00
4 changed files with 79 additions and 103 deletions

View File

@ -29,6 +29,18 @@ end
dimension(I::Generic.Ideal{U}, maxdepth = Inf) where {T <: RingElement, U <: MPolyRingElem{T}} =
length(gens(base_ring(I))) - codimension(I, maxdepth)
m2_ordering(R::MPolyRing) = Dict(
:lex => :Lex,
:deglex => :GLex,
:degrevlex => :GRevLex
)[ordering(R)]
string_m2(ring::MPolyRing) =
"QQ[$(join(symbols(ring), ", ")), MonomialOrder => $(m2_ordering(ring))]"
string_m2(f::MPolyRingElem) =
replace(string(f), "//" => "/")
# --- primitve elements ---
abstract type Element{T} end
@ -120,11 +132,11 @@ equation(rel::AlignsWithBy) = mprod(rel.elements[1].vec, rel.elements[2].vec) -
# --- constructions ---
mutable struct Construction{T}
points::Set{Point{T}}
spheres::Set{Sphere{T}}
relations::Set{Relation{T}}
points::Vector{Point{T}}
spheres::Vector{Sphere{T}}
relations::Vector{Relation{T}}
function Construction{T}(; elements = Set{Element{T}}(), relations = Set{Relation{T}}()) where T
function Construction{T}(; elements = Vector{Element{T}}(), relations = Vector{Relation{T}}()) where T
allelements = union(elements, (rel.elements for rel in relations)...)
new{T}(
filter(elt -> isa(elt, Point), allelements),
@ -149,7 +161,10 @@ function Base.push!(ctx::Construction{T}, rel::Relation{T}) where T
end
end
function realize(ctx::Construction{T}) where T
# output options:
# nothing - find a Gröbner basis
# :m2 - write a system of polynomials to a Macaulay2 file
function realize(ctx::Construction{T}; output = nothing) where T
# collect coordinate names
coordnamelist = Symbol[]
eltenum = enumerate(Iterators.flatten((ctx.spheres, ctx.points)))
@ -197,8 +212,16 @@ function realize(ctx::Construction{T}) where T
push!(eqns, sum(elt.vec[2] for elt in Iterators.flatten((ctx.points, ctx.spheres))) - n_elts)
end
## [test] (Generic.Ideal(coordring, eqns), eqns)
(nothing, eqns)
if output == :m2
file = open("macaulay2/construction.m2", "w")
write(file, string(
"coordring = $(string_m2(coordring))\n",
"eqns = {\n $(join(string_m2.(eqns), ",\n "))\n}"
))
close(file)
else
return (Generic.Ideal(coordring, eqns), eqns)
end
end
end

View File

@ -1,5 +1,6 @@
module Numerical
using Random: default_rng
using LinearAlgebra
using AbstractAlgebra
using HomotopyContinuation:
@ -28,16 +29,16 @@ end
# --- sampling ---
function real_samples(F::AbstractSystem, dim)
function real_samples(F::AbstractSystem, dim; rng = default_rng())
# choose a random real hyperplane of codimension `dim` by intersecting
# hyperplanes whose normal vectors are uniformly distributed over the unit
# sphere
# [to do] guard against the unlikely event that one of the normals is zero
normals = transpose(hcat(
(normalize(randn(nvariables(F))) for _ in 1:dim)...
(normalize(randn(rng, nvariables(F))) for _ in 1:dim)...
))
cut = LinearSubspace(normals, fill(0., dim))
filter(isreal, results(witness_set(F, cut)))
filter(isreal, results(witness_set(F, cut, seed = 0x1974abba)))
end
AbstractAlgebra.evaluate(pt::Point, vals::Vector{<:RingElement}) =

View File

@ -23,106 +23,55 @@ using GLMakie
CoeffType = Rational{Int64}
##a = Engine.Point{CoeffType}()
##s = Engine.Sphere{CoeffType}()
##a_on_s = Engine.LiesOn{CoeffType}(a, s)
##ctx = Engine.Construction{CoeffType}(elements = Set([a]), relations= Set([a_on_s]))
##ideal_a_s = Engine.realize(ctx)
##println("A point on a sphere: $(Engine.dimension(ideal_a_s)) degrees of freedom")
##b = Engine.Point{CoeffType}()
##b_on_s = Engine.LiesOn{CoeffType}(b, s)
##Engine.push!(ctx, b)
##Engine.push!(ctx, s)
##Engine.push!(ctx, b_on_s)
##ideal_ab_s, eqns_ab_s = Engine.realize(ctx)
##freedom = Engine.dimension(ideal_ab_s)
##println("Two points on a sphere: $freedom degrees of freedom")
##spheres = [Engine.Sphere{CoeffType}() for _ in 1:3]
##tangencies = [
## Engine.AlignsWithBy{CoeffType}(
## spheres[n],
## spheres[mod1(n+1, length(spheres))],
## CoeffType(-1//1)
## )
## for n in 1:3
##]
##tangencies = [
##Engine.LiesOn{CoeffType}(points[1], spheres[2]),
##Engine.LiesOn{CoeffType}(points[1], spheres[3]),
##Engine.LiesOn{CoeffType}(points[2], spheres[3]),
##Engine.LiesOn{CoeffType}(points[2], spheres[1]),
##Engine.LiesOn{CoeffType}(points[3], spheres[1]),
##Engine.LiesOn{CoeffType}(points[3], spheres[2])
##]
##ctx_tan_sph = Engine.Construction{CoeffType}(elements = Set(spheres), relations = Set(tangencies))
spheres = [Engine.Sphere{CoeffType}() for _ in 1:3]
tangencies = [
Engine.AlignsWithBy{CoeffType}(
spheres[n],
spheres[mod1(n+1, length(spheres))],
CoeffType(1)
)
for n in 1:3
]
ctx_tan_sph = Engine.Construction{CoeffType}(elements = spheres, relations = tangencies)
##ideal_tan_sph, eqns_tan_sph = Engine.realize(ctx_tan_sph)
Engine.realize(ctx_tan_sph, output = :m2)
##freedom = Engine.dimension(ideal_tan_sph)
##println("Three mutually tangent spheres: $freedom degrees of freedom")
points = [Engine.Point{CoeffType}() for _ in 1:3]
spheres = [Engine.Sphere{CoeffType}() for _ in 1:2]
ctx_joined = Engine.Construction{CoeffType}(
elements = Set([points; spheres]),
relations= Set([
Engine.LiesOn{CoeffType}(pt, sph)
for pt in points for sph in spheres
])
)
ideal_joined, eqns_joined = Engine.realize(ctx_joined)
freedom = Engine.dimension(ideal_joined)
println("$(length(points)) points on $(length(spheres)) spheres: $freedom degrees of freedom")
# --- test rational cut ---
coordring = base_ring(ideal_joined)
vbls = Variable.(symbols(coordring))
##coordring = base_ring(ideal_tan_sph)
##vbls = Variable.(symbols(coordring))
# test a random witness set
system = CompiledSystem(System(eqns_joined, variables = vbls))
norm2 = vec -> real(dot(conj.(vec), vec))
Random.seed!(6071)
n_planes = 3
samples = []
for _ in 1:n_planes
real_solns = solution.(Engine.Numerical.real_samples(system, freedom))
for soln in real_solns
if all(norm2(soln - samp) > 1e-4*length(gens(coordring)) for samp in samples)
push!(samples, soln)
end
end
end
println("$(length(samples)) sample solutions:")
for soln in samples
## display([vbls round.(soln, digits = 6)]) ## [verbose]
k_sq = abs2(soln[1])
if abs2(soln[end-2]) > 1e-12
if k_sq < 1e-12
println(" center at infinity: z coordinates $(round(soln[end], digits = 6)) and $(round(soln[end-1], digits = 6))")
else
sum_sq = soln[4]^2 + soln[7]^2 + soln[end-2]^2 / k_sq
println(" center on z axis: r² = $(round(1/k_sq, digits = 6)), x² + y² + h² = $(round(sum_sq, digits = 6))")
end
else
sum_sq = sum(soln[[4, 7, 10]] .^ 2)
println(" center at origin: r² = $(round(1/k_sq, digits = 6)); x² + y² + z² = $(round(sum_sq, digits = 6))")
end
end
##system = CompiledSystem(System(eqns_tan_sph, variables = vbls))
##norm2 = vec -> real(dot(conj.(vec), vec))
##rng = MersenneTwister(6071)
##n_planes = 6
##samples = []
##for _ in 1:n_planes
## real_solns = solution.(Engine.Numerical.real_samples(system, freedom, rng = rng))
## for soln in real_solns
## if all(norm2(soln - samp) > 1e-4*length(gens(coordring)) for samp in samples)
## push!(samples, soln)
## end
## end
##end
##println("Found $(length(samples)) sample solutions")
# show a sample solution
function show_solution(ctx, vals)
# evaluate elements
real_vals = real.(vals)
disp_points = [Engine.Numerical.evaluate(pt, real_vals) for pt in ctx.points]
disp_spheres = [Engine.Numerical.evaluate(sph, real_vals) for sph in ctx.spheres]
# create scene
scene = Scene()
cam3d!(scene)
scatter!(scene, disp_points, color = :green)
for sph in disp_spheres
mesh!(scene, sph, color = :gray)
end
scene
end
##function show_solution(ctx, vals)
## # evaluate elements
## real_vals = real.(vals)
## disp_points = [Engine.Numerical.evaluate(pt, real_vals) for pt in ctx.points]
## disp_spheres = [Engine.Numerical.evaluate(sph, real_vals) for sph in ctx.spheres]
##
## # create scene
## scene = Scene()
## cam3d!(scene)
## scatter!(scene, disp_points, color = :green)
## for sph in disp_spheres
## mesh!(scene, sph, color = :gray)
## end
## scene
##end

View File

@ -0,0 +1,3 @@
needsPackage "TriangularSets"
mprod = (v, w) -> (v#0*w#1 + w#0*v#1) / 2 - v#2*w#2 - v#3*w#3 - v#4*w#4