Compare commits

..

No commits in common. "b9587872d30249dffa2c073857ce1663dd8ef979" and "1fbeb23194cf1b90f6a26b1797af726750b81841" have entirely different histories.

3 changed files with 98 additions and 272 deletions

View File

@ -1,7 +0,0 @@
#version 300 es
in vec4 position;
void main() {
gl_Position = position;
}

View File

@ -1,187 +0,0 @@
#version 300 es
precision highp float;
out vec4 outColor;
// view
uniform vec2 resolution;
uniform float shortdim;
// controls
uniform vec2 ctrl;
uniform vec2 radius;
uniform float opacity;
uniform float highlight;
uniform int layer_threshold;
// light and camera
const float focal_slope = 0.3;
const vec3 light_dir = normalize(vec3(2., 2., 1.));
const float ixn_threshold = 0.005;
// --- sRGB ---
// map colors from RGB space to sRGB space, as specified in the sRGB standard
// (IEC 61966-2-1:1999)
//
// https://www.color.org/sRGB.pdf
// https://www.color.org/chardata/rgb/srgb.xalter
//
// in RGB space, color value is proportional to light intensity, so linear
// color-vector interpolation corresponds to physical light mixing. in sRGB
// space, the color encoding used by many monitors, we use more of the value
// interval to represent low intensities, and less of the interval to represent
// high intensities. this improves color quantization
float sRGB(float t) {
if (t <= 0.0031308) {
return 12.92*t;
} else {
return 1.055*pow(t, 5./12.) - 0.055;
}
}
vec3 sRGB(vec3 color) {
return vec3(sRGB(color.r), sRGB(color.g), sRGB(color.b));
}
// --- inversive geometry ---
struct vecInv {
vec3 sp;
vec2 lt;
};
vecInv sphere(vec3 center, float radius) {
return vecInv(
center / radius,
vec2(
0.5 / radius,
0.5 * (dot(center, center) / radius - radius)
)
);
}
// --- shading ---
struct taggedFrag {
int id;
vec4 color;
vec3 pt;
vec3 normal;
};
taggedFrag[2] sort(taggedFrag a, taggedFrag b) {
taggedFrag[2] result;
if (a.pt.z > b.pt.z) {
result[0] = a;
result[1] = b;
} else {
result[0] = b;
result[1] = a;
}
return result;
}
taggedFrag sphere_shading(vecInv v, vec3 pt, vec3 base_color, int id) {
// the expression for normal needs to be checked. it's supposed to give the
// negative gradient of the lorentz product between the impact point vector
// and the sphere vector with respect to the coordinates of the impact
// point. i calculated it in my head and decided that the result looked good
// enough for now
vec3 normal = normalize(-v.sp + 2.*v.lt.s*pt);
float incidence = dot(normal, light_dir);
float illum = mix(0.4, 1.0, max(incidence, 0.0));
return taggedFrag(id, vec4(illum * base_color, opacity), pt, normal);
}
// --- ray-casting ---
vec2 sphere_cast(vecInv v, vec3 dir) {
float a = -v.lt.s * dot(dir, dir);
float b = dot(v.sp, dir);
float c = -v.lt.t;
float scale = -b/(2.*a);
float adjust = 4.*a*c/(b*b);
if (adjust < 1.) {
float offset = sqrt(1. - adjust);
return vec2(
scale * (1. - offset),
scale * (1. + offset)
);
} else {
// these parameters describe points behind the camera, so the
// corresponding fragments won't be drawn
return vec2(-1., -1.);
}
}
void main() {
vec2 scr = (2.*gl_FragCoord.xy - resolution) / shortdim;
vec3 dir = vec3(focal_slope * scr, -1.);
// initialize two spheres
vecInv v [2];
v[0] = sphere(vec3(0.5, 0.5, -5. + ctrl.x), radius.x);
v[1] = sphere(vec3(-0.5, -0.5, -5. + ctrl.y), radius.y);
vec3 color0 = vec3(1., 0.214, 0.);
vec3 color1 = vec3(0., 0.214, 1.);
// cast rays through the spheres
vec2 u0 = sphere_cast(v[0], dir);
vec2 u1 = sphere_cast(v[1], dir);
// shade and depth-sort the impact points
taggedFrag front_hits[2] = sort(
sphere_shading(v[0], u0[0] * dir, color0, 0),
sphere_shading(v[1], u1[0] * dir, color1, 1)
);
taggedFrag back_hits[2] = sort(
sphere_shading(v[0], u0[1] * dir, color0, 0),
sphere_shading(v[1], u1[1] * dir, color1, 1)
);
taggedFrag middle_frags[2] = sort(front_hits[1], back_hits[0]);
// finish depth sorting
taggedFrag frags_by_depth[4];
frags_by_depth[0] = front_hits[0];
frags_by_depth[1] = middle_frags[0];
frags_by_depth[2] = middle_frags[1];
frags_by_depth[3] = back_hits[1];
// highlight intersections and cusps
for (int i = 3; i >= 1; --i) {
// intersections
taggedFrag frag0 = frags_by_depth[i];
taggedFrag frag1 = frags_by_depth[i-1];
float ixn_sin = length(cross(frag0.normal, frag1.normal));
vec3 disp = frag0.pt - frag1.pt;
float ixn_dist = max(
abs(dot(frag1.normal, disp)),
abs(dot(frag0.normal, disp))
) / ixn_sin;
float ixn_highlight = 0.5 * highlight * (1. - smoothstep(2./3.*ixn_threshold, 1.5*ixn_threshold, ixn_dist));
frags_by_depth[i].color = mix(frags_by_depth[i].color, vec4(1.), ixn_highlight);
frags_by_depth[i-1].color = mix(frags_by_depth[i-1].color, vec4(1.), ixn_highlight);
// cusps
float cusp_cos = abs(dot(dir, frag0.normal));
float cusp_threshold = 2.*sqrt(ixn_threshold * v[frag0.id].lt.s);
float cusp_highlight = highlight * (1. - smoothstep(2./3.*cusp_threshold, 1.5*cusp_threshold, cusp_cos));
frags_by_depth[i].color = mix(frags_by_depth[i].color, vec4(1.), cusp_highlight);
}
// composite the sphere fragments
vec3 color = vec3(0.);
for (int i = 3; i >= layer_threshold; --i) {
if (frags_by_depth[i].pt.z < 0.) {
vec4 frag_color = frags_by_depth[i].color;
color = mix(color, frag_color.rgb, frag_color.a);
}
}
outColor = vec4(sRGB(color), 1.);
}

View File

@ -8,6 +8,7 @@
// //
extern crate js_sys; extern crate js_sys;
use std::f64::consts::PI as PI;
use sycamore::{prelude::*, rt::{JsCast, JsValue}}; use sycamore::{prelude::*, rt::{JsCast, JsValue}};
use web_sys::{console, WebGl2RenderingContext, WebGlShader}; use web_sys::{console, WebGl2RenderingContext, WebGlShader};
@ -70,13 +71,8 @@ fn main() {
console_error_panic_hook::set_once(); console_error_panic_hook::set_once();
sycamore::render(|| { sycamore::render(|| {
let ctrl_x = create_signal(0.0); let turn = create_signal(0.0);
let ctrl_y = create_signal(0.0); let tip = create_signal(0.0);
let radius_x = create_signal(1.0);
let radius_y = create_signal(1.0);
let opacity = create_signal(0.5);
let highlight = create_signal(0.2);
let layer_threshold = create_signal(0.0);
let display = create_node_ref(); let display = create_node_ref();
on_mount(move || { on_mount(move || {
@ -95,12 +91,38 @@ fn main() {
let vertex_shader = compile_shader( let vertex_shader = compile_shader(
&ctx, &ctx,
WebGl2RenderingContext::VERTEX_SHADER, WebGl2RenderingContext::VERTEX_SHADER,
include_str!("identity.vert"), r##"#version 300 es
in vec3 position;
in vec3 color;
out vec4 vertexColor;
uniform mat4 world_to_clip;
uniform mat3 rotation;
void main() {
vec3 world_pos = rotation * position - vec3(0., 0., 6.);
gl_Position = world_to_clip * vec4(world_pos, 1.);
vertexColor = vec4(color, 1.);
}
"##,
); );
let fragment_shader = compile_shader( let fragment_shader = compile_shader(
&ctx, &ctx,
WebGl2RenderingContext::FRAGMENT_SHADER, WebGl2RenderingContext::FRAGMENT_SHADER,
include_str!("inversive.frag"), r##"#version 300 es
precision highp float;
in vec4 vertexColor;
out vec4 outColor;
void main() {
outColor = vertexColor;
}
"##,
); );
let program = ctx.create_program().unwrap(); let program = ctx.create_program().unwrap();
ctx.attach_shader(&program, &vertex_shader); ctx.attach_shader(&program, &vertex_shader);
@ -120,48 +142,80 @@ fn main() {
// find indices of vertex attributes and uniforms // find indices of vertex attributes and uniforms
let position_index = ctx.get_attrib_location(&program, "position") as u32; let position_index = ctx.get_attrib_location(&program, "position") as u32;
let resolution_loc = ctx.get_uniform_location(&program, "resolution"); let color_index = ctx.get_attrib_location(&program, "color") as u32;
let shortdim_loc = ctx.get_uniform_location(&program, "shortdim"); let world_to_clip_loc = ctx.get_uniform_location(&program, "world_to_clip");
let ctrl_loc = ctx.get_uniform_location(&program, "ctrl"); let rotation_loc = ctx.get_uniform_location(&program, "rotation");
let radius_loc = ctx.get_uniform_location(&program, "radius");
let opacity_loc = ctx.get_uniform_location(&program, "opacity");
let highlight_loc = ctx.get_uniform_location(&program, "highlight");
let layer_threshold_loc = ctx.get_uniform_location(&program, "layer_threshold");
// create a vertex array and bind it to the graphics context // create a vertex array and bind it to the graphics context
let vertex_array = ctx.create_vertex_array().unwrap(); let vertex_array = ctx.create_vertex_array().unwrap();
ctx.bind_vertex_array(Some(&vertex_array)); ctx.bind_vertex_array(Some(&vertex_array));
// set the vertex positions // set the projection map
const VERTEX_CNT: usize = 6; let focal_length = 3.0_f32;
let positions: [f32; 3*VERTEX_CNT] = [ let near_clip = 0.1_f32;
// northwest triangle let far_clip = 20_f32;
-1.0, -1.0, 0.0, let depth_inv = 1_f32 / (far_clip - near_clip);
-1.0, 1.0, 0.0, let world_to_clip: [f32; 16] = [
1.0, 1.0, 0.0, focal_length, 0.0, 0.0, 0.0,
// southeast triangle 0.0, focal_length, 0.0, 0.0,
-1.0, -1.0, 0.0, 0.0, 0.0, (near_clip + far_clip) * depth_inv, -1.,
1.0, 1.0, 0.0, 0.0, 0.0, 2. * near_clip * far_clip * depth_inv, 0.0
1.0, -1.0, 0.0
]; ];
bind_vertex_attrib(&ctx, position_index, 3, &positions); ctx.uniform_matrix4fv_with_f32_array(world_to_clip_loc.as_ref(), false, &world_to_clip);
// set up a repainting routine // set up a repainting routine
create_effect(move || { create_effect(move || {
// set the resolution const VERTEX_CNT: usize = 9;
let width = canvas.width() as f32;
let height = canvas.height() as f32;
ctx.uniform2f(resolution_loc.as_ref(), width, height);
ctx.uniform1f(shortdim_loc.as_ref(), width.min(height));
// pass the control parameters // set the vertex positions
ctx.uniform2f(ctrl_loc.as_ref(), ctrl_x.get() as f32, ctrl_y.get() as f32); let tip_shift = 4.0/3.0 * tip.get() as f32;
ctx.uniform2f(radius_loc.as_ref(), radius_x.get() as f32, radius_y.get() as f32); let positions: [f32; 3*VERTEX_CNT] = [
ctx.uniform1f(opacity_loc.as_ref(), opacity.get() as f32); // triangle 1
ctx.uniform1f(highlight_loc.as_ref(), highlight.get() as f32); 1.0 - tip_shift, 1.0 - tip_shift, 1.0 - tip_shift,
ctx.uniform1i(layer_threshold_loc.as_ref(), layer_threshold.get() as i32); 1.0, -1.0, -1.0,
-1.0, 1.0, -1.0,
// triangle 2
1.0 - tip_shift, 1.0 - tip_shift, 1.0 - tip_shift,
-1.0, 1.0, -1.0,
-1.0, -1.0, 1.0,
// triangle 3
1.0 - tip_shift, 1.0 - tip_shift, 1.0 - tip_shift,
-1.0, -1.0, 1.0,
1.0, -1.0, -1.0
];
bind_vertex_attrib(&ctx, position_index, 3, &positions);
// draw the scene // set the vertex colors
let colors: [f32; 3*VERTEX_CNT] = [
// triangle 1
1.0, 0.0, 0.5,
1.0, 0.0, 0.5,
1.0, 0.0, 0.5,
// triangle 2
0.0, 0.5, 1.0,
0.0, 0.5, 1.0,
0.0, 0.5, 1.0,
// triangle 3
0.5, 0.0, 1.0,
0.5, 0.0, 1.0,
0.5, 0.0, 1.0
];
bind_vertex_attrib(&ctx, color_index, 3, &colors);
// set the rotation
let angle_val = (2.0*PI*turn.get()) as f32;
let angle_cos = angle_val.cos();
let angle_sin = angle_val.sin();
let rotation: [f32; 9] = [
angle_cos, 0.0, angle_sin,
0.0, 1.0, 0.0,
-angle_sin, 0.0, angle_cos,
];
ctx.uniform_matrix3fv_with_f32_array(rotation_loc.as_ref(), false, &rotation);
// clear the screen and draw the scene
ctx.clear_color(0.0, 0.0, 0.0, 1.0);
ctx.clear(WebGl2RenderingContext::COLOR_BUFFER_BIT);
ctx.draw_arrays(WebGl2RenderingContext::TRIANGLES, 0, VERTEX_CNT as i32); ctx.draw_arrays(WebGl2RenderingContext::TRIANGLES, 0, VERTEX_CNT as i32);
}); });
}); });
@ -171,49 +225,15 @@ fn main() {
canvas(ref=display, width="600", height="600") canvas(ref=display, width="600", height="600")
input( input(
type="range", type="range",
min=-1.0,
max=1.0, max=1.0,
step=0.001, step=0.01,
bind:valueAsNumber=ctrl_x bind:valueAsNumber=turn
)
input(
type="range",
min=-1.0,
max=1.0,
step=0.001,
bind:valueAsNumber=ctrl_y
)
input(
type="range",
min=0.5,
max=1.5,
step=0.001,
bind:valueAsNumber=radius_x
)
input(
type="range",
min=0.5,
max=1.5,
step=0.001,
bind:valueAsNumber=radius_y
) )
input( input(
type="range", type="range",
max=1.0, max=1.0,
step=0.001, step=0.01,
bind:valueAsNumber=opacity bind:valueAsNumber=tip
)
input(
type="range",
max=1.0,
step=0.001,
bind:valueAsNumber=highlight
)
input(
type="range",
max=3.0,
step=1.0,
bind:valueAsNumber=layer_threshold
) )
} }
} }