Compare commits
4 Commits
af1d31f6e6
...
1f173708eb
Author | SHA1 | Date | |
---|---|---|---|
|
1f173708eb | ||
|
6f18d4efcc | ||
|
621c4c5776 | ||
|
b3b7c2026d |
201
engine-proto/Engine.Algebraic.jl
Normal file
201
engine-proto/Engine.Algebraic.jl
Normal file
@ -0,0 +1,201 @@
|
||||
module Algebraic
|
||||
|
||||
export
|
||||
codimension, dimension,
|
||||
Construction, realize,
|
||||
Element, Point, Sphere,
|
||||
Relation, LiesOn, AlignsWithBy, mprod
|
||||
|
||||
import Subscripts
|
||||
using LinearAlgebra
|
||||
using AbstractAlgebra
|
||||
using Groebner
|
||||
using ...HittingSet
|
||||
|
||||
# --- commutative algebra ---
|
||||
|
||||
# as of version 0.36.6, AbstractAlgebra only supports ideals in multivariate
|
||||
# polynomial rings when the coefficients are integers. we use Groebner to extend
|
||||
# support to rationals and to finite fields of prime order
|
||||
Generic.reduce_gens(I::Generic.Ideal{U}) where {T <: FieldElement, U <: MPolyRingElem{T}} =
|
||||
Generic.Ideal{U}(base_ring(I), groebner(gens(I)))
|
||||
|
||||
function codimension(I::Generic.Ideal{U}, maxdepth = Inf) where {T <: RingElement, U <: MPolyRingElem{T}}
|
||||
leading = [exponent_vector(f, 1) for f in gens(I)]
|
||||
targets = [Set(findall(.!iszero.(exp_vec))) for exp_vec in leading]
|
||||
length(HittingSet.solve(HittingSetProblem(targets), maxdepth))
|
||||
end
|
||||
|
||||
dimension(I::Generic.Ideal{U}, maxdepth = Inf) where {T <: RingElement, U <: MPolyRingElem{T}} =
|
||||
length(gens(base_ring(I))) - codimension(I, maxdepth)
|
||||
|
||||
# --- primitve elements ---
|
||||
|
||||
abstract type Element{T} end
|
||||
|
||||
mutable struct Point{T} <: Element{T}
|
||||
coords::Vector{MPolyRingElem{T}}
|
||||
vec::Union{Vector{MPolyRingElem{T}}, Nothing}
|
||||
rel::Nothing
|
||||
|
||||
## [to do] constructor argument never needed?
|
||||
Point{T}(
|
||||
coords::Vector{MPolyRingElem{T}} = MPolyRingElem{T}[],
|
||||
vec::Union{Vector{MPolyRingElem{T}}, Nothing} = nothing
|
||||
) where T = new(coords, vec, nothing)
|
||||
end
|
||||
|
||||
function buildvec!(pt::Point)
|
||||
coordring = parent(pt.coords[1])
|
||||
pt.vec = [one(coordring), dot(pt.coords, pt.coords), pt.coords...]
|
||||
end
|
||||
|
||||
mutable struct Sphere{T} <: Element{T}
|
||||
coords::Vector{MPolyRingElem{T}}
|
||||
vec::Union{Vector{MPolyRingElem{T}}, Nothing}
|
||||
rel::Union{MPolyRingElem{T}, Nothing}
|
||||
|
||||
## [to do] constructor argument never needed?
|
||||
Sphere{T}(
|
||||
coords::Vector{MPolyRingElem{T}} = MPolyRingElem{T}[],
|
||||
vec::Union{Vector{MPolyRingElem{T}}, Nothing} = nothing,
|
||||
rel::Union{MPolyRingElem{T}, Nothing} = nothing
|
||||
) where T = new(coords, vec, rel)
|
||||
end
|
||||
|
||||
function buildvec!(sph::Sphere)
|
||||
coordring = parent(sph.coords[1])
|
||||
sph.vec = sph.coords
|
||||
sph.rel = mprod(sph.coords, sph.coords) + one(coordring)
|
||||
end
|
||||
|
||||
const coordnames = IdDict{Symbol, Vector{Union{Symbol, Nothing}}}(
|
||||
nameof(Point) => [nothing, nothing, :xₚ, :yₚ, :zₚ],
|
||||
nameof(Sphere) => [:rₛ, :sₛ, :xₛ, :yₛ, :zₛ]
|
||||
)
|
||||
|
||||
coordname(elt::Element, index) = coordnames[nameof(typeof(elt))][index]
|
||||
|
||||
function pushcoordname!(coordnamelist, indexed_elt::Tuple{Any, Element}, coordindex)
|
||||
eltindex, elt = indexed_elt
|
||||
name = coordname(elt, coordindex)
|
||||
if !isnothing(name)
|
||||
subscript = Subscripts.sub(string(eltindex))
|
||||
push!(coordnamelist, Symbol(name, subscript))
|
||||
end
|
||||
end
|
||||
|
||||
function takecoord!(coordlist, indexed_elt::Tuple{Any, Element}, coordindex)
|
||||
elt = indexed_elt[2]
|
||||
if !isnothing(coordname(elt, coordindex))
|
||||
push!(elt.coords, popfirst!(coordlist))
|
||||
end
|
||||
end
|
||||
|
||||
# --- primitive relations ---
|
||||
|
||||
abstract type Relation{T} end
|
||||
|
||||
mprod(v, w) = (v[1]*w[2] + w[1]*v[2]) / 2 - dot(v[3:end], w[3:end])
|
||||
|
||||
# elements: point, sphere
|
||||
struct LiesOn{T} <: Relation{T}
|
||||
elements::Vector{Element{T}}
|
||||
|
||||
LiesOn{T}(pt::Point{T}, sph::Sphere{T}) where T = new{T}([pt, sph])
|
||||
end
|
||||
|
||||
equation(rel::LiesOn) = mprod(rel.elements[1].vec, rel.elements[2].vec)
|
||||
|
||||
# elements: sphere, sphere
|
||||
struct AlignsWithBy{T} <: Relation{T}
|
||||
elements::Vector{Element{T}}
|
||||
cos_angle::T
|
||||
|
||||
AlignsWithBy{T}(sph1::Sphere{T}, sph2::Sphere{T}, cos_angle::T) where T = new{T}([sph1, sph2], cos_angle)
|
||||
end
|
||||
|
||||
equation(rel::AlignsWithBy) = mprod(rel.elements[1].vec, rel.elements[2].vec) - rel.cos_angle
|
||||
|
||||
# --- constructions ---
|
||||
|
||||
mutable struct Construction{T}
|
||||
points::Set{Point{T}}
|
||||
spheres::Set{Sphere{T}}
|
||||
relations::Set{Relation{T}}
|
||||
|
||||
function Construction{T}(; elements = Set{Element{T}}(), relations = Set{Relation{T}}()) where T
|
||||
allelements = union(elements, (rel.elements for rel in relations)...)
|
||||
new{T}(
|
||||
filter(elt -> isa(elt, Point), allelements),
|
||||
filter(elt -> isa(elt, Sphere), allelements),
|
||||
relations
|
||||
)
|
||||
end
|
||||
end
|
||||
|
||||
function Base.push!(ctx::Construction{T}, elt::Point{T}) where T
|
||||
push!(ctx.points, elt)
|
||||
end
|
||||
|
||||
function Base.push!(ctx::Construction{T}, elt::Sphere{T}) where T
|
||||
push!(ctx.spheres, elt)
|
||||
end
|
||||
|
||||
function Base.push!(ctx::Construction{T}, rel::Relation{T}) where T
|
||||
push!(ctx.relations, rel)
|
||||
for elt in rel.elements
|
||||
push!(ctx, elt)
|
||||
end
|
||||
end
|
||||
|
||||
function realize(ctx::Construction{T}) where T
|
||||
# collect coordinate names
|
||||
coordnamelist = Symbol[]
|
||||
eltenum = enumerate(Iterators.flatten((ctx.spheres, ctx.points)))
|
||||
for coordindex in 1:5
|
||||
for indexed_elt in eltenum
|
||||
pushcoordname!(coordnamelist, indexed_elt, coordindex)
|
||||
end
|
||||
end
|
||||
|
||||
# construct coordinate ring
|
||||
coordring, coordqueue = polynomial_ring(parent_type(T)(), coordnamelist, ordering = :degrevlex)
|
||||
|
||||
# retrieve coordinates
|
||||
for (_, elt) in eltenum
|
||||
empty!(elt.coords)
|
||||
end
|
||||
for coordindex in 1:5
|
||||
for indexed_elt in eltenum
|
||||
takecoord!(coordqueue, indexed_elt, coordindex)
|
||||
end
|
||||
end
|
||||
|
||||
# construct coordinate vectors
|
||||
for (_, elt) in eltenum
|
||||
buildvec!(elt)
|
||||
end
|
||||
|
||||
# turn relations into equations
|
||||
eqns = vcat(
|
||||
equation.(ctx.relations),
|
||||
[elt.rel for (_, elt) in eltenum if !isnothing(elt.rel)]
|
||||
)
|
||||
|
||||
# add relations to center, orient, and scale the construction
|
||||
if !isempty(ctx.points)
|
||||
append!(eqns, [sum(pt.coords[k] for pt in ctx.points) for k in 1:3])
|
||||
end
|
||||
if !isempty(ctx.spheres)
|
||||
append!(eqns, [sum(sph.coords[k] for sph in ctx.spheres) for k in 3:4])
|
||||
end
|
||||
n_elts = length(ctx.points) + length(ctx.spheres)
|
||||
if n_elts > 0
|
||||
push!(eqns, sum(elt.vec[2] for elt in Iterators.flatten((ctx.points, ctx.spheres))) - n_elts)
|
||||
end
|
||||
|
||||
(Generic.Ideal(coordring, eqns), eqns)
|
||||
end
|
||||
|
||||
end
|
40
engine-proto/Engine.Numerical.jl
Normal file
40
engine-proto/Engine.Numerical.jl
Normal file
@ -0,0 +1,40 @@
|
||||
module Numerical
|
||||
|
||||
using LinearAlgebra
|
||||
using AbstractAlgebra
|
||||
using HomotopyContinuation
|
||||
using ..Algebraic
|
||||
|
||||
# --- polynomial conversion ---
|
||||
|
||||
# hat tip Sascha Timme
|
||||
# https://github.com/JuliaHomotopyContinuation/HomotopyContinuation.jl/issues/520#issuecomment-1317681521
|
||||
function Base.convert(::Type{Expression}, f::MPolyRingElem)
|
||||
variables = Variable.(symbols(parent(f)))
|
||||
f_data = zip(AbstractAlgebra.coefficients(f), exponent_vectors(f))
|
||||
sum(cf * prod(variables .^ exp_vec) for (cf, exp_vec) in f_data)
|
||||
end
|
||||
|
||||
# create a ModelKit.System from an ideal in a multivariate polynomial ring. the
|
||||
# variable ordering is taken from the polynomial ring
|
||||
function System(I::Generic.Ideal)
|
||||
eqns = Expression.(gens(I))
|
||||
variables = Variable.(symbols(base_ring(I)))
|
||||
System(eqns, variables = variables)
|
||||
end
|
||||
|
||||
# --- sampling ---
|
||||
|
||||
function real_samples(F::AbstractSystem, dim)
|
||||
# choose a random real hyperplane of codimension `dim` by intersecting
|
||||
# hyperplanes whose normal vectors are uniformly distributed over the unit
|
||||
# sphere
|
||||
# [to do] guard against the unlikely event that one of the normals is zero
|
||||
normals = transpose(hcat(
|
||||
(normalize(randn(nvariables(F))) for _ in 1:dim)...
|
||||
))
|
||||
cut = LinearSubspace(normals, fill(0., dim))
|
||||
filter(isreal, results(witness_set(F, cut)))
|
||||
end
|
||||
|
||||
end
|
@ -2,229 +2,14 @@ include("HittingSet.jl")
|
||||
|
||||
module Engine
|
||||
|
||||
include("Engine.Algebraic.jl")
|
||||
include("Engine.Numerical.jl")
|
||||
|
||||
using .Algebraic
|
||||
using .Numerical
|
||||
|
||||
export Construction, mprod, codimension, dimension
|
||||
|
||||
import Subscripts
|
||||
using LinearAlgebra
|
||||
using AbstractAlgebra
|
||||
using Groebner
|
||||
using HomotopyContinuation: Variable, Expression, System
|
||||
using ..HittingSet
|
||||
|
||||
# --- commutative algebra ---
|
||||
|
||||
# as of version 0.36.6, AbstractAlgebra only supports ideals in multivariate
|
||||
# polynomial rings when the coefficients are integers. we use Groebner to extend
|
||||
# support to rationals and to finite fields of prime order
|
||||
Generic.reduce_gens(I::Generic.Ideal{U}) where {T <: FieldElement, U <: MPolyRingElem{T}} =
|
||||
Generic.Ideal{U}(base_ring(I), groebner(gens(I)))
|
||||
|
||||
function codimension(I::Generic.Ideal{U}, maxdepth = Inf) where {T <: RingElement, U <: MPolyRingElem{T}}
|
||||
leading = [exponent_vector(f, 1) for f in gens(I)]
|
||||
targets = [Set(findall(.!iszero.(exp_vec))) for exp_vec in leading]
|
||||
length(HittingSet.solve(HittingSetProblem(targets), maxdepth))
|
||||
end
|
||||
|
||||
dimension(I::Generic.Ideal{U}, maxdepth = Inf) where {T <: RingElement, U <: MPolyRingElem{T}} =
|
||||
length(gens(base_ring(I))) - codimension(I, maxdepth)
|
||||
|
||||
# hat tip Sascha Timme
|
||||
# https://github.com/JuliaHomotopyContinuation/HomotopyContinuation.jl/issues/520#issuecomment-1317681521
|
||||
function Base.convert(::Type{Expression}, f::MPolyRingElem)
|
||||
variables = Variable.(symbols(parent(f)))
|
||||
f_data = zip(coefficients(f), exponent_vectors(f))
|
||||
sum(cf * prod(variables .^ exp_vec) for (cf, exp_vec) in f_data)
|
||||
end
|
||||
|
||||
# create a ModelKit.System from an ideal in a multivariate polynomial ring. the
|
||||
# variable ordering is taken from the polynomial ring
|
||||
function System(I::Generic.Ideal)
|
||||
eqns = Expression.(gens(I))
|
||||
variables = Variable.(symbols(base_ring(I)))
|
||||
System(eqns, variables = variables)
|
||||
end
|
||||
|
||||
## [to do] not needed right now
|
||||
# create a ModelKit.System from a list of elements of a multivariate polynomial
|
||||
# ring. the variable ordering is taken from the polynomial ring
|
||||
##function System(eqns::AbstractVector{MPolyRingElem})
|
||||
## if isempty(eqns)
|
||||
## return System([])
|
||||
## else
|
||||
## variables = Variable.(symbols(parent(f)))
|
||||
## return System(Expression.(eqns), variables = variables)
|
||||
## end
|
||||
##end
|
||||
|
||||
# --- primitve elements ---
|
||||
|
||||
abstract type Element{T} end
|
||||
|
||||
mutable struct Point{T} <: Element{T}
|
||||
coords::Vector{MPolyRingElem{T}}
|
||||
vec::Union{Vector{MPolyRingElem{T}}, Nothing}
|
||||
rel::Nothing
|
||||
|
||||
## [to do] constructor argument never needed?
|
||||
Point{T}(
|
||||
coords::Vector{MPolyRingElem{T}} = MPolyRingElem{T}[],
|
||||
vec::Union{Vector{MPolyRingElem{T}}, Nothing} = nothing
|
||||
) where T = new(coords, vec, nothing)
|
||||
end
|
||||
|
||||
function buildvec!(pt::Point)
|
||||
coordring = parent(pt.coords[1])
|
||||
pt.vec = [one(coordring), dot(pt.coords, pt.coords), pt.coords...]
|
||||
end
|
||||
|
||||
mutable struct Sphere{T} <: Element{T}
|
||||
coords::Vector{MPolyRingElem{T}}
|
||||
vec::Union{Vector{MPolyRingElem{T}}, Nothing}
|
||||
rel::Union{MPolyRingElem{T}, Nothing}
|
||||
|
||||
## [to do] constructor argument never needed?
|
||||
Sphere{T}(
|
||||
coords::Vector{MPolyRingElem{T}} = MPolyRingElem{T}[],
|
||||
vec::Union{Vector{MPolyRingElem{T}}, Nothing} = nothing,
|
||||
rel::Union{MPolyRingElem{T}, Nothing} = nothing
|
||||
) where T = new(coords, vec, rel)
|
||||
end
|
||||
|
||||
function buildvec!(sph::Sphere)
|
||||
coordring = parent(sph.coords[1])
|
||||
sph.vec = sph.coords
|
||||
sph.rel = mprod(sph.coords, sph.coords) + one(coordring)
|
||||
end
|
||||
|
||||
const coordnames = IdDict{Symbol, Vector{Union{Symbol, Nothing}}}(
|
||||
nameof(Point) => [nothing, nothing, :xₚ, :yₚ, :zₚ],
|
||||
nameof(Sphere) => [:rₛ, :sₛ, :xₛ, :yₛ, :zₛ]
|
||||
)
|
||||
|
||||
coordname(elt::Element, index) = coordnames[nameof(typeof(elt))][index]
|
||||
|
||||
function pushcoordname!(coordnamelist, indexed_elt::Tuple{Any, Element}, coordindex)
|
||||
eltindex, elt = indexed_elt
|
||||
name = coordname(elt, coordindex)
|
||||
if !isnothing(name)
|
||||
subscript = Subscripts.sub(string(eltindex))
|
||||
push!(coordnamelist, Symbol(name, subscript))
|
||||
end
|
||||
end
|
||||
|
||||
function takecoord!(coordlist, indexed_elt::Tuple{Any, Element}, coordindex)
|
||||
elt = indexed_elt[2]
|
||||
if !isnothing(coordname(elt, coordindex))
|
||||
push!(elt.coords, popfirst!(coordlist))
|
||||
end
|
||||
end
|
||||
|
||||
# --- primitive relations ---
|
||||
|
||||
abstract type Relation{T} end
|
||||
|
||||
mprod(v, w) = (v[1]*w[2] + w[1]*v[2]) / 2 - dot(v[3:end], w[3:end])
|
||||
|
||||
# elements: point, sphere
|
||||
struct LiesOn{T} <: Relation{T}
|
||||
elements::Vector{Element{T}}
|
||||
|
||||
LiesOn{T}(pt::Point{T}, sph::Sphere{T}) where T = new{T}([pt, sph])
|
||||
end
|
||||
|
||||
equation(rel::LiesOn) = mprod(rel.elements[1].vec, rel.elements[2].vec)
|
||||
|
||||
# elements: sphere, sphere
|
||||
struct AlignsWithBy{T} <: Relation{T}
|
||||
elements::Vector{Element{T}}
|
||||
cos_angle::T
|
||||
|
||||
AlignsWithBy{T}(sph1::Sphere{T}, sph2::Sphere{T}, cos_angle::T) where T = new{T}([sph1, sph2], cos_angle)
|
||||
end
|
||||
|
||||
equation(rel::AlignsWithBy) = mprod(rel.elements[1].vec, rel.elements[2].vec) - rel.cos_angle
|
||||
|
||||
# --- constructions ---
|
||||
|
||||
mutable struct Construction{T}
|
||||
points::Set{Point{T}}
|
||||
spheres::Set{Sphere{T}}
|
||||
relations::Set{Relation{T}}
|
||||
|
||||
function Construction{T}(; elements = Set{Element{T}}(), relations = Set{Relation{T}}()) where T
|
||||
allelements = union(elements, (rel.elements for rel in relations)...)
|
||||
new{T}(
|
||||
filter(elt -> isa(elt, Point), allelements),
|
||||
filter(elt -> isa(elt, Sphere), allelements),
|
||||
relations
|
||||
)
|
||||
end
|
||||
end
|
||||
|
||||
function Base.push!(ctx::Construction{T}, elt::Point{T}) where T
|
||||
push!(ctx.points, elt)
|
||||
end
|
||||
|
||||
function Base.push!(ctx::Construction{T}, elt::Sphere{T}) where T
|
||||
push!(ctx.spheres, elt)
|
||||
end
|
||||
|
||||
function Base.push!(ctx::Construction{T}, rel::Relation{T}) where T
|
||||
push!(ctx.relations, rel)
|
||||
for elt in rel.elements
|
||||
push!(ctx, elt)
|
||||
end
|
||||
end
|
||||
|
||||
function realize(ctx::Construction{T}) where T
|
||||
# collect coordinate names
|
||||
coordnamelist = Symbol[]
|
||||
eltenum = enumerate(Iterators.flatten((ctx.spheres, ctx.points)))
|
||||
for coordindex in 1:5
|
||||
for indexed_elt in eltenum
|
||||
pushcoordname!(coordnamelist, indexed_elt, coordindex)
|
||||
end
|
||||
end
|
||||
|
||||
# construct coordinate ring
|
||||
coordring, coordqueue = polynomial_ring(parent_type(T)(), coordnamelist, ordering = :degrevlex)
|
||||
|
||||
# retrieve coordinates
|
||||
for (_, elt) in eltenum
|
||||
empty!(elt.coords)
|
||||
end
|
||||
for coordindex in 1:5
|
||||
for indexed_elt in eltenum
|
||||
takecoord!(coordqueue, indexed_elt, coordindex)
|
||||
end
|
||||
end
|
||||
|
||||
# construct coordinate vectors
|
||||
for (_, elt) in eltenum
|
||||
buildvec!(elt)
|
||||
end
|
||||
|
||||
# turn relations into equations
|
||||
eqns = vcat(
|
||||
equation.(ctx.relations),
|
||||
[elt.rel for (_, elt) in eltenum if !isnothing(elt.rel)]
|
||||
)
|
||||
|
||||
# add relations to center, orient, and scale the construction
|
||||
if !isempty(ctx.points)
|
||||
append!(eqns, [sum(pt.coords[k] for pt in ctx.points) for k in 1:3])
|
||||
end
|
||||
if !isempty(ctx.spheres)
|
||||
append!(eqns, [sum(sph.coords[k] for sph in ctx.spheres) for k in 3:4])
|
||||
end
|
||||
n_elts = length(ctx.points) + length(ctx.spheres)
|
||||
if n_elts > 0
|
||||
push!(eqns, sum(elt.vec[2] for elt in Iterators.flatten((ctx.points, ctx.spheres))) - n_elts)
|
||||
end
|
||||
|
||||
(Generic.Ideal(coordring, eqns), eqns)
|
||||
end
|
||||
|
||||
end
|
||||
|
||||
# ~~~ sandbox setup ~~~
|
||||
@ -290,29 +75,14 @@ trivial_soln[sph_z_ind] .= 1
|
||||
println("trivial solutions: $trivial_soln")
|
||||
norm2 = vec -> real(dot(conj.(vec), vec))
|
||||
is_nontrivial = soln -> norm2(abs.(real.(soln)) - trivial_soln) > 1e-4*length(gens(coordring))
|
||||
max_slope = 5
|
||||
binom = Binomial(2max_slope, 1/2)
|
||||
##max_slope = 5
|
||||
##binom = Binomial(2max_slope, 1/2)
|
||||
Random.seed!(6071)
|
||||
n_planes = 36
|
||||
for through_trivial in [false, true]
|
||||
samples = []
|
||||
for _ in 1:n_planes
|
||||
cut_matrix = rand(binom, freedom, length(gens(coordring))) .- max_slope
|
||||
##cut_matrix = [
|
||||
## 1 1 1 1 0 1 1 0 1 1 0;
|
||||
## 1 2 1 2 0 1 1 0 1 1 0;
|
||||
## 1 1 0 1 0 1 2 0 2 0 0
|
||||
##]
|
||||
## [verbose] display(cut_matrix)
|
||||
if through_trivial
|
||||
cut_offset = [sum(cf[sph_z_ind]) for cf in eachrow(cut_matrix)]
|
||||
## [verbose] display(cut_offset)
|
||||
cut_subspace = LinearSubspace(cut_matrix, cut_offset)
|
||||
else
|
||||
cut_subspace = LinearSubspace(cut_matrix, fill(0, freedom))
|
||||
end
|
||||
wtns = witness_set(system, cut_subspace)
|
||||
real_solns = solution.(filter(isreal, results(wtns)))
|
||||
real_solns = solution.(Engine.Numerical.real_samples(system, freedom))
|
||||
nontrivial_solns = filter(is_nontrivial, real_solns)
|
||||
println("$(length(real_solns) - length(nontrivial_solns)) trivial solutions found")
|
||||
for soln in nontrivial_solns
|
||||
@ -329,7 +99,7 @@ for through_trivial in [false, true]
|
||||
end
|
||||
println("$(length(samples)) sample solutions, not including the trivial one:")
|
||||
for soln in samples
|
||||
## [verbose] display([vbls round.(soln, digits = 6)])
|
||||
## display([vbls round.(soln, digits = 6)]) ## [verbose]
|
||||
k_sq = abs2(soln[1])
|
||||
if abs2(soln[end-2]) > 1e-12
|
||||
if k_sq < 1e-12
|
||||
|
Loading…
Reference in New Issue
Block a user