Compare commits

...

2 Commits

Author SHA1 Message Date
Aaron Fenyes
f97090c997 Try a cut that goes through the trivial solution
The previous cut was supposed to do this, but I was missing some parentheses.
2024-02-08 01:58:12 -05:00
Aaron Fenyes
45aaaafc8f Seek sample solutions by cutting with a hyperplane
The example hyperplane yields a single solution, with multiplicity six. You can
find it analytically by hand, and homotopy continuation finds it numerically.
2024-02-08 01:53:55 -05:00

View File

@ -2,12 +2,13 @@ include("HittingSet.jl")
module Engine
export Construction, mprod
export Construction, mprod, codimension, dimension
import Subscripts
using LinearAlgebra
using AbstractAlgebra
using Groebner
using HomotopyContinuation: Variable, Expression, System
using ..HittingSet
# --- commutative algebra ---
@ -27,6 +28,34 @@ end
dimension(I::Generic.Ideal{U}, maxdepth = Inf) where {T <: RingElement, U <: MPolyRingElem{T}} =
length(gens(base_ring(I))) - codimension(I, maxdepth)
# hat tip Sascha Timme
# https://github.com/JuliaHomotopyContinuation/HomotopyContinuation.jl/issues/520#issuecomment-1317681521
function Base.convert(::Type{Expression}, f::MPolyRingElem)
variables = Variable.(symbols(parent(f)))
f_data = zip(coefficients(f), exponent_vectors(f))
sum(cf * prod(variables .^ exp_vec) for (cf, exp_vec) in f_data)
end
# create a ModelKit.System from an ideal in a multivariate polynomial ring. the
# variable ordering is taken from the polynomial ring
function System(I::Generic.Ideal)
eqns = Expression.(gens(I))
variables = Variable.(symbols(base_ring(I)))
System(eqns, variables = variables)
end
## [to do] not needed right now
# create a ModelKit.System from a list of elements of a multivariate polynomial
# ring. the variable ordering is taken from the polynomial ring
##function System(eqns::AbstractVector{MPolyRingElem})
## if isempty(eqns)
## return System([])
## else
## variables = Variable.(symbols(parent(f)))
## return System(Expression.(eqns), variables = variables)
## end
##end
# --- primitve elements ---
abstract type Element{T} end
@ -189,39 +218,75 @@ function realize(ctx::Construction{T}) where T
append!(eqns, [sum(sph.coords[k] for sph in ctx.spheres) for k in 3:4])
end
Generic.Ideal(coordring, eqns)
(Generic.Ideal(coordring, eqns), eqns)
end
end
# ~~~ sandbox setup ~~~
using AbstractAlgebra
using HomotopyContinuation
CoeffType = Rational{Int64}
a = Engine.Point{CoeffType}()
s = Engine.Sphere{CoeffType}()
a_on_s = Engine.LiesOn{CoeffType}(a, s)
ctx = Engine.Construction{CoeffType}(elements = Set([a]), relations= Set([a_on_s]))
ideal_a_s = Engine.realize(ctx)
println("A point on a sphere: ", Engine.dimension(ideal_a_s), " degrees of freeom")
##ideal_a_s = Engine.realize(ctx)
##println("A point on a sphere: ", Engine.dimension(ideal_a_s), " degrees of freedom")
b = Engine.Point{CoeffType}()
b_on_s = Engine.LiesOn{CoeffType}(b, s)
Engine.push!(ctx, b)
Engine.push!(ctx, s)
Engine.push!(ctx, b_on_s)
ideal_ab_s = Engine.realize(ctx)
println("Two points on a sphere: ", Engine.dimension(ideal_ab_s), " degrees of freeom")
ideal_ab_s, eqns_ab_s = Engine.realize(ctx)
println("Two points on a sphere: ", Engine.dimension(ideal_ab_s), " degrees of freedom")
spheres = [Engine.Sphere{CoeffType}() for _ in 1:3]
tangencies = [
Engine.AlignsWithBy{CoeffType}(
spheres[n],
spheres[mod1(n+1, length(spheres))],
CoeffType(-1//1)
)
for n in 1:3
##spheres = [Engine.Sphere{CoeffType}() for _ in 1:3]
##tangencies = [
## Engine.AlignsWithBy{CoeffType}(
## spheres[n],
## spheres[mod1(n+1, length(spheres))],
## CoeffType(-1//1)
## )
## for n in 1:3
##]
##ctx_tan_sph = Engine.Construction{CoeffType}(elements = Set(spheres), relations = Set(tangencies))
##ideal_tan_sph = Engine.realize(ctx_tan_sph)
##println("Three mutually tangent spheres: ", Engine.dimension(ideal_tan_sph), " degrees of freedom")
# --- test rational cut ---
cut = [
sum(vcat(a.coords, (s.coords - [0, 0, 0, 0, 1])))
sum(vcat([2, 1, 1] .* a.coords, [1, 2, 1, 1, 1] .* (s.coords - [0, 0, 0, 0, 1])))
sum(vcat([1, 2, 0] .* a.coords, [1, 1, 0, 1, 2] .* (s.coords - [0, 0, 0, 0, 1])))
]
ctx_tan_sph = Engine.Construction{CoeffType}(elements = Set(spheres), relations = Set(tangencies))
ideal_tan_sph = Engine.realize(ctx_tan_sph)
println("Three mutually tangent spheres: ", Engine.dimension(ideal_tan_sph), " degrees of freeom")
cut_ideal_ab_s = Generic.Ideal(base_ring(ideal_ab_s), [gens(ideal_ab_s); cut])
cut_dim = Engine.dimension(cut_ideal_ab_s)
println("Two points on a sphere, after cut: ", cut_dim, " degrees of freedom")
if cut_dim == 0
vbls = Variable.(symbols(base_ring(ideal_ab_s)))
cut_system = System([eqns_ab_s; cut], variables = vbls)
cut_result = HomotopyContinuation.solve(cut_system)
println("non-singular solutions:")
for soln in solutions(cut_result)
display(soln)
end
println("singular solutions:")
for sing in singular(cut_result)
display(sing.solution)
end
# test corresponding witness set
cut_matrix = [1 1 1 1 0 1 1 0 1 1 0; 1 2 1 2 0 1 1 0 1 1 0; 1 1 0 1 0 1 2 0 2 0 0]
cut_subspace = LinearSubspace(cut_matrix, [1, 1, 2])
witness = witness_set(System(eqns_ab_s, variables = vbls), cut_subspace)
println("witness solutions:")
for wtns in solutions(witness)
display(wtns)
end
end