Compare commits

..

2 Commits

Author SHA1 Message Date
Aaron Fenyes
2a505c1f59 Store elements in arrays to keep order stable
This seems to restore reproducibility.
2024-02-15 14:27:41 -08:00
Aaron Fenyes
a6da6f9925 Investigate why witness sets aren't reproducible
All the random number generators seems to be seeded, so why aren't the results
reproducible?
2024-02-15 14:17:03 -08:00
3 changed files with 26 additions and 23 deletions

View File

@ -120,11 +120,11 @@ equation(rel::AlignsWithBy) = mprod(rel.elements[1].vec, rel.elements[2].vec) -
# --- constructions --- # --- constructions ---
mutable struct Construction{T} mutable struct Construction{T}
points::Set{Point{T}} points::Vector{Point{T}}
spheres::Set{Sphere{T}} spheres::Vector{Sphere{T}}
relations::Set{Relation{T}} relations::Vector{Relation{T}}
function Construction{T}(; elements = Set{Element{T}}(), relations = Set{Relation{T}}()) where T function Construction{T}(; elements = Vector{Element{T}}(), relations = Vector{Relation{T}}()) where T
allelements = union(elements, (rel.elements for rel in relations)...) allelements = union(elements, (rel.elements for rel in relations)...)
new{T}( new{T}(
filter(elt -> isa(elt, Point), allelements), filter(elt -> isa(elt, Point), allelements),

View File

@ -1,5 +1,6 @@
module Numerical module Numerical
using Random: default_rng
using LinearAlgebra using LinearAlgebra
using AbstractAlgebra using AbstractAlgebra
using HomotopyContinuation: using HomotopyContinuation:
@ -28,16 +29,18 @@ end
# --- sampling --- # --- sampling ---
function real_samples(F::AbstractSystem, dim) function real_samples(F::AbstractSystem, dim; rng = default_rng())
# choose a random real hyperplane of codimension `dim` by intersecting # choose a random real hyperplane of codimension `dim` by intersecting
# hyperplanes whose normal vectors are uniformly distributed over the unit # hyperplanes whose normal vectors are uniformly distributed over the unit
# sphere # sphere
# [to do] guard against the unlikely event that one of the normals is zero # [to do] guard against the unlikely event that one of the normals is zero
normals = transpose(hcat( ##normals = transpose(hcat(
(normalize(randn(nvariables(F))) for _ in 1:dim)... ## (normalize(randn(rng, nvariables(F))) for _ in 1:dim)...
)) ##))
cut = LinearSubspace(normals, fill(0., dim)) ##cut = LinearSubspace(normals, fill(0., dim))
filter(isreal, results(witness_set(F, cut))) ##filter(isreal, results(witness_set(F, cut, seed = 0x8af341df)))
##filter(isreal, results(witness_set(F, seed = 0x8af341df)))
results(witness_set(F, seed = 0x8af341df))
end end
AbstractAlgebra.evaluate(pt::Point, vals::Vector{<:RingElement}) = AbstractAlgebra.evaluate(pt::Point, vals::Vector{<:RingElement}) =

View File

@ -56,16 +56,16 @@ tangencies = [
##Engine.LiesOn{CoeffType}(points[3], spheres[1]), ##Engine.LiesOn{CoeffType}(points[3], spheres[1]),
##Engine.LiesOn{CoeffType}(points[3], spheres[2]) ##Engine.LiesOn{CoeffType}(points[3], spheres[2])
##] ##]
ctx_tan_sph = Engine.Construction{CoeffType}(elements = Set(spheres), relations = Set(tangencies)) ctx_tan_sph = Engine.Construction{CoeffType}(elements = spheres, relations = tangencies)
ideal_tan_sph, eqns_tan_sph = Engine.realize(ctx_tan_sph) ideal_tan_sph, eqns_tan_sph = Engine.realize(ctx_tan_sph)
##small_eqns_tan_sph = eqns_tan_sph ##small_eqns_tan_sph = eqns_tan_sph
small_eqns_tan_sph = [ ##small_eqns_tan_sph = [
eqns_tan_sph; ## eqns_tan_sph;
spheres[2].coords - [1, 0, 0, 0, 1]; ## spheres[2].coords - [1, 0, 0, 0, 1];
spheres[3].coords - [1, 0, 0, 0, -1]; ## spheres[3].coords - [1, 0, 0, 0, -1];
] ##]
small_ideal_tan_sph = Generic.Ideal(base_ring(ideal_tan_sph), small_eqns_tan_sph) ##small_ideal_tan_sph = Generic.Ideal(base_ring(ideal_tan_sph), small_eqns_tan_sph)
freedom = Engine.dimension(small_ideal_tan_sph) freedom = Engine.dimension(ideal_tan_sph)
println("Three mutually tangent spheres, with two fixed: $freedom degrees of freedom") println("Three mutually tangent spheres, with two fixed: $freedom degrees of freedom")
##points = [Engine.Point{CoeffType}() for _ in 1:3] ##points = [Engine.Point{CoeffType}() for _ in 1:3]
@ -83,17 +83,17 @@ println("Three mutually tangent spheres, with two fixed: $freedom degrees of fre
# --- test rational cut --- # --- test rational cut ---
coordring = base_ring(small_ideal_tan_sph) coordring = base_ring(ideal_tan_sph)
vbls = Variable.(symbols(coordring)) vbls = Variable.(symbols(coordring))
# test a random witness set # test a random witness set
system = CompiledSystem(System(small_eqns_tan_sph, variables = vbls)) system = CompiledSystem(System(eqns_tan_sph, variables = vbls))
norm2 = vec -> real(dot(conj.(vec), vec)) norm2 = vec -> real(dot(conj.(vec), vec))
Random.seed!(6071) rng = MersenneTwister(6701)
n_planes = 36 n_planes = 6
samples = [] samples = []
for _ in 1:n_planes for _ in 1:n_planes
real_solns = solution.(Engine.Numerical.real_samples(system, freedom)) real_solns = solution.(Engine.Numerical.real_samples(system, freedom, rng = rng))
for soln in real_solns for soln in real_solns
if all(norm2(soln - samp) > 1e-4*length(gens(coordring)) for samp in samples) if all(norm2(soln - samp) > 1e-4*length(gens(coordring)) for samp in samples)
push!(samples, soln) push!(samples, soln)