|
|
|
@ -19,24 +19,25 @@ using Distributions
|
|
|
|
|
using LinearAlgebra
|
|
|
|
|
using AbstractAlgebra
|
|
|
|
|
using HomotopyContinuation
|
|
|
|
|
using GLMakie
|
|
|
|
|
|
|
|
|
|
CoeffType = Rational{Int64}
|
|
|
|
|
|
|
|
|
|
a = Engine.Point{CoeffType}()
|
|
|
|
|
s = Engine.Sphere{CoeffType}()
|
|
|
|
|
a_on_s = Engine.LiesOn{CoeffType}(a, s)
|
|
|
|
|
ctx = Engine.Construction{CoeffType}(elements = Set([a]), relations= Set([a_on_s]))
|
|
|
|
|
##a = Engine.Point{CoeffType}()
|
|
|
|
|
##s = Engine.Sphere{CoeffType}()
|
|
|
|
|
##a_on_s = Engine.LiesOn{CoeffType}(a, s)
|
|
|
|
|
##ctx = Engine.Construction{CoeffType}(elements = Set([a]), relations= Set([a_on_s]))
|
|
|
|
|
##ideal_a_s = Engine.realize(ctx)
|
|
|
|
|
##println("A point on a sphere: ", Engine.dimension(ideal_a_s), " degrees of freedom")
|
|
|
|
|
##println("A point on a sphere: $(Engine.dimension(ideal_a_s)) degrees of freedom")
|
|
|
|
|
|
|
|
|
|
b = Engine.Point{CoeffType}()
|
|
|
|
|
b_on_s = Engine.LiesOn{CoeffType}(b, s)
|
|
|
|
|
Engine.push!(ctx, b)
|
|
|
|
|
Engine.push!(ctx, s)
|
|
|
|
|
Engine.push!(ctx, b_on_s)
|
|
|
|
|
ideal_ab_s, eqns_ab_s = Engine.realize(ctx)
|
|
|
|
|
freedom = Engine.dimension(ideal_ab_s)
|
|
|
|
|
println("Two points on a sphere: ", freedom, " degrees of freedom")
|
|
|
|
|
##b = Engine.Point{CoeffType}()
|
|
|
|
|
##b_on_s = Engine.LiesOn{CoeffType}(b, s)
|
|
|
|
|
##Engine.push!(ctx, b)
|
|
|
|
|
##Engine.push!(ctx, s)
|
|
|
|
|
##Engine.push!(ctx, b_on_s)
|
|
|
|
|
##ideal_ab_s, eqns_ab_s = Engine.realize(ctx)
|
|
|
|
|
##freedom = Engine.dimension(ideal_ab_s)
|
|
|
|
|
##println("Two points on a sphere: $freedom degrees of freedom")
|
|
|
|
|
|
|
|
|
|
##spheres = [Engine.Sphere{CoeffType}() for _ in 1:3]
|
|
|
|
|
##tangencies = [
|
|
|
|
@ -47,58 +48,53 @@ println("Two points on a sphere: ", freedom, " degrees of freedom")
|
|
|
|
|
## )
|
|
|
|
|
## for n in 1:3
|
|
|
|
|
##]
|
|
|
|
|
##tangencies = [
|
|
|
|
|
##Engine.LiesOn{CoeffType}(points[1], spheres[2]),
|
|
|
|
|
##Engine.LiesOn{CoeffType}(points[1], spheres[3]),
|
|
|
|
|
##Engine.LiesOn{CoeffType}(points[2], spheres[3]),
|
|
|
|
|
##Engine.LiesOn{CoeffType}(points[2], spheres[1]),
|
|
|
|
|
##Engine.LiesOn{CoeffType}(points[3], spheres[1]),
|
|
|
|
|
##Engine.LiesOn{CoeffType}(points[3], spheres[2])
|
|
|
|
|
##]
|
|
|
|
|
##ctx_tan_sph = Engine.Construction{CoeffType}(elements = Set(spheres), relations = Set(tangencies))
|
|
|
|
|
##ideal_tan_sph = Engine.realize(ctx_tan_sph)
|
|
|
|
|
##println("Three mutually tangent spheres: ", Engine.dimension(ideal_tan_sph), " degrees of freedom")
|
|
|
|
|
##ideal_tan_sph, eqns_tan_sph = Engine.realize(ctx_tan_sph)
|
|
|
|
|
##freedom = Engine.dimension(ideal_tan_sph)
|
|
|
|
|
##println("Three mutually tangent spheres: $freedom degrees of freedom")
|
|
|
|
|
|
|
|
|
|
points = [Engine.Point{CoeffType}() for _ in 1:3]
|
|
|
|
|
spheres = [Engine.Sphere{CoeffType}() for _ in 1:2]
|
|
|
|
|
ctx_joined = Engine.Construction{CoeffType}(
|
|
|
|
|
elements = Set([points; spheres]),
|
|
|
|
|
relations= Set([
|
|
|
|
|
Engine.LiesOn{CoeffType}(pt, sph)
|
|
|
|
|
for pt in points for sph in spheres
|
|
|
|
|
])
|
|
|
|
|
)
|
|
|
|
|
ideal_joined, eqns_joined = Engine.realize(ctx_joined)
|
|
|
|
|
freedom = Engine.dimension(ideal_joined)
|
|
|
|
|
println("$(length(points)) points on $(length(spheres)) spheres: $freedom degrees of freedom")
|
|
|
|
|
|
|
|
|
|
# --- test rational cut ---
|
|
|
|
|
|
|
|
|
|
coordring = base_ring(ideal_ab_s)
|
|
|
|
|
coordring = base_ring(ideal_joined)
|
|
|
|
|
vbls = Variable.(symbols(coordring))
|
|
|
|
|
##cut_system = CompiledSystem(System([eqns_ab_s; cut], variables = vbls))
|
|
|
|
|
##cut_result = HomotopyContinuation.solve(cut_system)
|
|
|
|
|
##println("non-singular solutions:")
|
|
|
|
|
##for soln in solutions(cut_result)
|
|
|
|
|
## display(soln)
|
|
|
|
|
##end
|
|
|
|
|
##println("singular solutions:")
|
|
|
|
|
##for sing in singular(cut_result)
|
|
|
|
|
## display(sing.solution)
|
|
|
|
|
##end
|
|
|
|
|
|
|
|
|
|
# test a random witness set
|
|
|
|
|
system = CompiledSystem(System(eqns_ab_s, variables = vbls))
|
|
|
|
|
sph_z_ind = indexin([sph.coords[5] for sph in ctx.spheres], gens(coordring))
|
|
|
|
|
println("sphere z variables: ", vbls[sph_z_ind])
|
|
|
|
|
trivial_soln = fill(0, length(gens(coordring)))
|
|
|
|
|
trivial_soln[sph_z_ind] .= 1
|
|
|
|
|
println("trivial solutions: $trivial_soln")
|
|
|
|
|
system = CompiledSystem(System(eqns_joined, variables = vbls))
|
|
|
|
|
norm2 = vec -> real(dot(conj.(vec), vec))
|
|
|
|
|
is_nontrivial = soln -> norm2(abs.(real.(soln)) - trivial_soln) > 1e-4*length(gens(coordring))
|
|
|
|
|
##max_slope = 5
|
|
|
|
|
##binom = Binomial(2max_slope, 1/2)
|
|
|
|
|
Random.seed!(6071)
|
|
|
|
|
n_planes = 36
|
|
|
|
|
for through_trivial in [false, true]
|
|
|
|
|
samples = []
|
|
|
|
|
for _ in 1:n_planes
|
|
|
|
|
n_planes = 3
|
|
|
|
|
samples = []
|
|
|
|
|
for _ in 1:n_planes
|
|
|
|
|
real_solns = solution.(Engine.Numerical.real_samples(system, freedom))
|
|
|
|
|
nontrivial_solns = filter(is_nontrivial, real_solns)
|
|
|
|
|
println("$(length(real_solns) - length(nontrivial_solns)) trivial solutions found")
|
|
|
|
|
for soln in nontrivial_solns
|
|
|
|
|
## [test] for soln in filter(is_nontrivial, solution.(filter(isreal, results(wtns))))
|
|
|
|
|
for soln in real_solns
|
|
|
|
|
if all(norm2(soln - samp) > 1e-4*length(gens(coordring)) for samp in samples)
|
|
|
|
|
push!(samples, soln)
|
|
|
|
|
end
|
|
|
|
|
end
|
|
|
|
|
end
|
|
|
|
|
if through_trivial
|
|
|
|
|
println("--- planes through trivial solution ---")
|
|
|
|
|
else
|
|
|
|
|
println("--- planes through origin ---")
|
|
|
|
|
end
|
|
|
|
|
println("$(length(samples)) sample solutions, not including the trivial one:")
|
|
|
|
|
for soln in samples
|
|
|
|
|
end
|
|
|
|
|
println("$(length(samples)) sample solutions:")
|
|
|
|
|
for soln in samples
|
|
|
|
|
## display([vbls round.(soln, digits = 6)]) ## [verbose]
|
|
|
|
|
k_sq = abs2(soln[1])
|
|
|
|
|
if abs2(soln[end-2]) > 1e-12
|
|
|
|
@ -112,5 +108,21 @@ for through_trivial in [false, true]
|
|
|
|
|
sum_sq = sum(soln[[4, 7, 10]] .^ 2)
|
|
|
|
|
println(" center at origin: r² = $(round(1/k_sq, digits = 6)); x² + y² + z² = $(round(sum_sq, digits = 6))")
|
|
|
|
|
end
|
|
|
|
|
end
|
|
|
|
|
end
|
|
|
|
|
|
|
|
|
|
# show a sample solution
|
|
|
|
|
function show_solution(ctx, vals)
|
|
|
|
|
# evaluate elements
|
|
|
|
|
real_vals = real.(vals)
|
|
|
|
|
disp_points = [Engine.Numerical.evaluate(pt, real_vals) for pt in ctx.points]
|
|
|
|
|
disp_spheres = [Engine.Numerical.evaluate(sph, real_vals) for sph in ctx.spheres]
|
|
|
|
|
|
|
|
|
|
# create scene
|
|
|
|
|
scene = Scene()
|
|
|
|
|
cam3d!(scene)
|
|
|
|
|
scatter!(scene, disp_points, color = :green)
|
|
|
|
|
for sph in disp_spheres
|
|
|
|
|
mesh!(scene, sph, color = :gray)
|
|
|
|
|
end
|
|
|
|
|
scene
|
|
|
|
|
end
|