Compare commits

...

4 Commits

Author SHA1 Message Date
Aaron Fenyes
e41bcc7e13 Explore the performance wall
Three points on two spheres is too much.
2024-02-13 04:02:14 -05:00
Aaron Fenyes
31d5e7e864 Play with two points on two spheres
Guess conditions that make the scaling constraint impossible to satisfy.
2024-02-12 22:48:16 -05:00
Aaron Fenyes
a450f701fb Try displaying a chain of spheres
For three mutually tangent spheres, I couldn't find real solutions.
2024-02-12 21:14:07 -05:00
Aaron Fenyes
6cf07dc6a1 Evaluate and display elements 2024-02-12 20:34:12 -05:00
3 changed files with 95 additions and 68 deletions

View File

@ -184,6 +184,8 @@ function realize(ctx::Construction{T}) where T
) )
# add relations to center, orient, and scale the construction # add relations to center, orient, and scale the construction
# [to do] the scaling constraint, as written, can be impossible to satisfy
# when all of the spheres have to go through the origin
if !isempty(ctx.points) if !isempty(ctx.points)
append!(eqns, [sum(pt.coords[k] for pt in ctx.points) for k in 1:3]) append!(eqns, [sum(pt.coords[k] for pt in ctx.points) for k in 1:3])
end end
@ -195,7 +197,8 @@ function realize(ctx::Construction{T}) where T
push!(eqns, sum(elt.vec[2] for elt in Iterators.flatten((ctx.points, ctx.spheres))) - n_elts) push!(eqns, sum(elt.vec[2] for elt in Iterators.flatten((ctx.points, ctx.spheres))) - n_elts)
end end
(Generic.Ideal(coordring, eqns), eqns) ## [test] (Generic.Ideal(coordring, eqns), eqns)
(nothing, eqns)
end end
end end

View File

@ -2,7 +2,10 @@ module Numerical
using LinearAlgebra using LinearAlgebra
using AbstractAlgebra using AbstractAlgebra
using HomotopyContinuation using HomotopyContinuation:
Variable, Expression, AbstractSystem, System, LinearSubspace,
nvariables, isreal, witness_set, results
import GLMakie
using ..Algebraic using ..Algebraic
# --- polynomial conversion --- # --- polynomial conversion ---
@ -11,7 +14,7 @@ using ..Algebraic
# https://github.com/JuliaHomotopyContinuation/HomotopyContinuation.jl/issues/520#issuecomment-1317681521 # https://github.com/JuliaHomotopyContinuation/HomotopyContinuation.jl/issues/520#issuecomment-1317681521
function Base.convert(::Type{Expression}, f::MPolyRingElem) function Base.convert(::Type{Expression}, f::MPolyRingElem)
variables = Variable.(symbols(parent(f))) variables = Variable.(symbols(parent(f)))
f_data = zip(AbstractAlgebra.coefficients(f), exponent_vectors(f)) f_data = zip(coefficients(f), exponent_vectors(f))
sum(cf * prod(variables .^ exp_vec) for (cf, exp_vec) in f_data) sum(cf * prod(variables .^ exp_vec) for (cf, exp_vec) in f_data)
end end
@ -37,4 +40,13 @@ function real_samples(F::AbstractSystem, dim)
filter(isreal, results(witness_set(F, cut))) filter(isreal, results(witness_set(F, cut)))
end end
AbstractAlgebra.evaluate(pt::Point, vals::Vector{<:RingElement}) =
GLMakie.Point3f([evaluate(u, vals) for u in pt.coords])
function AbstractAlgebra.evaluate(sph::Sphere, vals::Vector{<:RingElement})
radius = 1 / evaluate(sph.coords[1], vals)
center = radius * [evaluate(u, vals) for u in sph.coords[3:end]]
GLMakie.Sphere(GLMakie.Point3f(center), radius)
end
end end

View File

@ -19,24 +19,25 @@ using Distributions
using LinearAlgebra using LinearAlgebra
using AbstractAlgebra using AbstractAlgebra
using HomotopyContinuation using HomotopyContinuation
using GLMakie
CoeffType = Rational{Int64} CoeffType = Rational{Int64}
a = Engine.Point{CoeffType}() ##a = Engine.Point{CoeffType}()
s = Engine.Sphere{CoeffType}() ##s = Engine.Sphere{CoeffType}()
a_on_s = Engine.LiesOn{CoeffType}(a, s) ##a_on_s = Engine.LiesOn{CoeffType}(a, s)
ctx = Engine.Construction{CoeffType}(elements = Set([a]), relations= Set([a_on_s])) ##ctx = Engine.Construction{CoeffType}(elements = Set([a]), relations= Set([a_on_s]))
##ideal_a_s = Engine.realize(ctx) ##ideal_a_s = Engine.realize(ctx)
##println("A point on a sphere: ", Engine.dimension(ideal_a_s), " degrees of freedom") ##println("A point on a sphere: $(Engine.dimension(ideal_a_s)) degrees of freedom")
b = Engine.Point{CoeffType}() ##b = Engine.Point{CoeffType}()
b_on_s = Engine.LiesOn{CoeffType}(b, s) ##b_on_s = Engine.LiesOn{CoeffType}(b, s)
Engine.push!(ctx, b) ##Engine.push!(ctx, b)
Engine.push!(ctx, s) ##Engine.push!(ctx, s)
Engine.push!(ctx, b_on_s) ##Engine.push!(ctx, b_on_s)
ideal_ab_s, eqns_ab_s = Engine.realize(ctx) ##ideal_ab_s, eqns_ab_s = Engine.realize(ctx)
freedom = Engine.dimension(ideal_ab_s) ##freedom = Engine.dimension(ideal_ab_s)
println("Two points on a sphere: ", freedom, " degrees of freedom") ##println("Two points on a sphere: $freedom degrees of freedom")
##spheres = [Engine.Sphere{CoeffType}() for _ in 1:3] ##spheres = [Engine.Sphere{CoeffType}() for _ in 1:3]
##tangencies = [ ##tangencies = [
@ -47,58 +48,53 @@ println("Two points on a sphere: ", freedom, " degrees of freedom")
## ) ## )
## for n in 1:3 ## for n in 1:3
##] ##]
##tangencies = [
##Engine.LiesOn{CoeffType}(points[1], spheres[2]),
##Engine.LiesOn{CoeffType}(points[1], spheres[3]),
##Engine.LiesOn{CoeffType}(points[2], spheres[3]),
##Engine.LiesOn{CoeffType}(points[2], spheres[1]),
##Engine.LiesOn{CoeffType}(points[3], spheres[1]),
##Engine.LiesOn{CoeffType}(points[3], spheres[2])
##]
##ctx_tan_sph = Engine.Construction{CoeffType}(elements = Set(spheres), relations = Set(tangencies)) ##ctx_tan_sph = Engine.Construction{CoeffType}(elements = Set(spheres), relations = Set(tangencies))
##ideal_tan_sph = Engine.realize(ctx_tan_sph) ##ideal_tan_sph, eqns_tan_sph = Engine.realize(ctx_tan_sph)
##println("Three mutually tangent spheres: ", Engine.dimension(ideal_tan_sph), " degrees of freedom") ##freedom = Engine.dimension(ideal_tan_sph)
##println("Three mutually tangent spheres: $freedom degrees of freedom")
points = [Engine.Point{CoeffType}() for _ in 1:3]
spheres = [Engine.Sphere{CoeffType}() for _ in 1:2]
ctx_joined = Engine.Construction{CoeffType}(
elements = Set([points; spheres]),
relations= Set([
Engine.LiesOn{CoeffType}(pt, sph)
for pt in points for sph in spheres
])
)
ideal_joined, eqns_joined = Engine.realize(ctx_joined)
freedom = Engine.dimension(ideal_joined)
println("$(length(points)) points on $(length(spheres)) spheres: $freedom degrees of freedom")
# --- test rational cut --- # --- test rational cut ---
coordring = base_ring(ideal_ab_s) coordring = base_ring(ideal_joined)
vbls = Variable.(symbols(coordring)) vbls = Variable.(symbols(coordring))
##cut_system = CompiledSystem(System([eqns_ab_s; cut], variables = vbls))
##cut_result = HomotopyContinuation.solve(cut_system)
##println("non-singular solutions:")
##for soln in solutions(cut_result)
## display(soln)
##end
##println("singular solutions:")
##for sing in singular(cut_result)
## display(sing.solution)
##end
# test a random witness set # test a random witness set
system = CompiledSystem(System(eqns_ab_s, variables = vbls)) system = CompiledSystem(System(eqns_joined, variables = vbls))
sph_z_ind = indexin([sph.coords[5] for sph in ctx.spheres], gens(coordring))
println("sphere z variables: ", vbls[sph_z_ind])
trivial_soln = fill(0, length(gens(coordring)))
trivial_soln[sph_z_ind] .= 1
println("trivial solutions: $trivial_soln")
norm2 = vec -> real(dot(conj.(vec), vec)) norm2 = vec -> real(dot(conj.(vec), vec))
is_nontrivial = soln -> norm2(abs.(real.(soln)) - trivial_soln) > 1e-4*length(gens(coordring))
##max_slope = 5
##binom = Binomial(2max_slope, 1/2)
Random.seed!(6071) Random.seed!(6071)
n_planes = 36 n_planes = 3
for through_trivial in [false, true] samples = []
samples = [] for _ in 1:n_planes
for _ in 1:n_planes
real_solns = solution.(Engine.Numerical.real_samples(system, freedom)) real_solns = solution.(Engine.Numerical.real_samples(system, freedom))
nontrivial_solns = filter(is_nontrivial, real_solns) for soln in real_solns
println("$(length(real_solns) - length(nontrivial_solns)) trivial solutions found")
for soln in nontrivial_solns
## [test] for soln in filter(is_nontrivial, solution.(filter(isreal, results(wtns))))
if all(norm2(soln - samp) > 1e-4*length(gens(coordring)) for samp in samples) if all(norm2(soln - samp) > 1e-4*length(gens(coordring)) for samp in samples)
push!(samples, soln) push!(samples, soln)
end end
end end
end end
if through_trivial println("$(length(samples)) sample solutions:")
println("--- planes through trivial solution ---") for soln in samples
else
println("--- planes through origin ---")
end
println("$(length(samples)) sample solutions, not including the trivial one:")
for soln in samples
## display([vbls round.(soln, digits = 6)]) ## [verbose] ## display([vbls round.(soln, digits = 6)]) ## [verbose]
k_sq = abs2(soln[1]) k_sq = abs2(soln[1])
if abs2(soln[end-2]) > 1e-12 if abs2(soln[end-2]) > 1e-12
@ -112,5 +108,21 @@ for through_trivial in [false, true]
sum_sq = sum(soln[[4, 7, 10]] .^ 2) sum_sq = sum(soln[[4, 7, 10]] .^ 2)
println(" center at origin: r² = $(round(1/k_sq, digits = 6)); x² + y² + z² = $(round(sum_sq, digits = 6))") println(" center at origin: r² = $(round(1/k_sq, digits = 6)); x² + y² + z² = $(round(sum_sq, digits = 6))")
end end
end end
# show a sample solution
function show_solution(ctx, vals)
# evaluate elements
real_vals = real.(vals)
disp_points = [Engine.Numerical.evaluate(pt, real_vals) for pt in ctx.points]
disp_spheres = [Engine.Numerical.evaluate(sph, real_vals) for sph in ctx.spheres]
# create scene
scene = Scene()
cam3d!(scene)
scatter!(scene, disp_points, color = :green)
for sph in disp_spheres
mesh!(scene, sph, color = :gray)
end
scene
end end