Compare commits

..

7 Commits

Author SHA1 Message Date
Aaron Fenyes
517fd327fa Assembly: mark constraints as active or not 2024-10-16 23:22:25 -07:00
Aaron Fenyes
f1690b62e1 Move full interface prototype to top level 2024-10-14 17:08:44 -07:00
Aaron Fenyes
cca5a781c4 Remove standalone display prototype 2024-10-14 16:43:13 -07:00
Aaron Fenyes
abe231126d Display: restore intersection and cusp highlighting
This increases resource use a bit, because we now have to hold two
fragments in memory at once instead of just one. It's still much better
than holding all of the top twelve fragments, though!
2024-10-14 16:36:52 -07:00
Aaron Fenyes
ee1c691787 Display: shade fragments after depth sorting
This reduces register pressure significantly. This stepping stone commit
temporarily removes highlighting of intersections and cusps.
2024-10-14 16:04:56 -07:00
Aaron Fenyes
19907838ce Display: remove redundant depth test 2024-09-30 17:59:48 -07:00
Aaron Fenyes
e3120f7109 Display: remove unused fragment-sorting function 2024-09-30 16:48:36 -07:00
20 changed files with 80 additions and 1199 deletions

View File

@ -1,4 +0,0 @@
target
dist
profiling
Cargo.lock

View File

@ -1,40 +0,0 @@
[package]
name = "inversive-display"
version = "0.1.0"
authors = ["Aaron"]
edition = "2021"
[features]
default = ["console_error_panic_hook"]
[dependencies]
js-sys = "0.3.70"
nalgebra = "0.33.0"
sycamore = "0.9.0-beta.2"
# The `console_error_panic_hook` crate provides better debugging of panics by
# logging them with `console.error`. This is great for development, but requires
# all the `std::fmt` and `std::panicking` infrastructure, so isn't great for
# code size when deploying.
console_error_panic_hook = { version = "0.1.7", optional = true }
[dependencies.web-sys]
version = "0.3.69"
features = [
'HtmlCanvasElement',
'Performance',
'WebGl2RenderingContext',
'WebGlBuffer',
'WebGlProgram',
'WebGlShader',
'WebGlUniformLocation',
'WebGlVertexArrayObject',
'Window'
]
[dev-dependencies]
wasm-bindgen-test = "0.3.34"
[profile.release]
opt-level = "s" # optimize for small code size
debug = true # include debug symbols

View File

@ -1,9 +0,0 @@
<!DOCTYPE html>
<html>
<head>
<meta charset="utf-8"/>
<title>Inversive display</title>
<link data-trunk rel="css" href="main.css"/>
</head>
<body></body>
</html>

View File

@ -1,74 +0,0 @@
body {
margin-left: 20px;
margin-top: 20px;
color: #fcfcfc;
background-color: #202020;
}
#app {
display: flex;
flex-direction: column;
width: 600px;
}
canvas {
float: left;
background-color: #020202;
border: 1px solid #555;
border-radius: 10px;
margin-top: 5px;
}
canvas:focus {
border-color: #aaa;
}
.hidden {
display: none;
}
.control, .tab-pane {
display: flex;
flex-direction: row;
width: 600px;
}
input[type="radio"] {
appearance: none;
width: 0px;
height: 0px;
padding: 0px;
margin: 0px;
outline: none;
}
.tab-pane > label {
border: 1px solid #aaa;
border-radius: 5px;
text-align: center;
padding: 5px;
margin-right: 10px;
margin-bottom: 5px;
}
.tab-pane > label:has(:checked) {
border-color: #fcfcfc;
background-color: #555;
}
.tab-pane > label:has(:focus-visible) {
outline: medium auto currentColor;
}
.tab-pane > label:hover:not(:has(:checked)) {
border-color: #bbb;
background-color: #333;
}
.control > span {
width: 170px;
}
input {
flex-grow: 1;
}

View File

@ -1,27 +0,0 @@
use nalgebra::DVector;
// the sphere with the given center and radius, with inward-pointing normals
pub fn sphere(center_x: f64, center_y: f64, center_z: f64, radius: f64) -> DVector<f64> {
let center_norm_sq = center_x * center_x + center_y * center_y + center_z * center_z;
DVector::from_column_slice(&[
center_x / radius,
center_y / radius,
center_z / radius,
0.5 / radius,
0.5 * (center_norm_sq / radius - radius)
])
}
// the sphere of curvature `curv` whose closest point to the origin has position
// `off * dir` and normal `dir`, where `dir` is a unit vector. setting the
// curvature to zero gives a plane
pub fn sphere_with_offset(dir_x: f64, dir_y: f64, dir_z: f64, off: f64, curv: f64) -> DVector<f64> {
let norm_sp = 1.0 + off * curv;
DVector::from_column_slice(&[
norm_sp * dir_x,
norm_sp * dir_y,
norm_sp * dir_z,
0.5 * curv,
off * (1.0 + 0.5 * off * curv)
])
}

View File

@ -1,7 +0,0 @@
#version 300 es
in vec4 position;
void main() {
gl_Position = position;
}

View File

@ -1,226 +0,0 @@
#version 300 es
precision highp float;
out vec4 outColor;
// --- inversive geometry ---
struct vecInv {
vec3 sp;
vec2 lt;
};
// --- uniforms ---
// construction
const int SPHERE_MAX = 200;
uniform int sphere_cnt;
uniform vecInv sphere_list[SPHERE_MAX];
uniform vec3 color_list[SPHERE_MAX];
// view
uniform vec2 resolution;
uniform float shortdim;
// controls
uniform float opacity;
uniform float highlight;
uniform int layer_threshold;
uniform bool debug_mode;
// light and camera
const float focal_slope = 0.3;
const vec3 light_dir = normalize(vec3(2., 2., 1.));
const float ixn_threshold = 0.005;
const float INTERIOR_DIMMING = 0.7;
// --- sRGB ---
// map colors from RGB space to sRGB space, as specified in the sRGB standard
// (IEC 61966-2-1:1999)
//
// https://www.color.org/sRGB.pdf
// https://www.color.org/chardata/rgb/srgb.xalter
//
// in RGB space, color value is proportional to light intensity, so linear
// color-vector interpolation corresponds to physical light mixing. in sRGB
// space, the color encoding used by many monitors, we use more of the value
// interval to represent low intensities, and less of the interval to represent
// high intensities. this improves color quantization
float sRGB(float t) {
if (t <= 0.0031308) {
return 12.92*t;
} else {
return 1.055*pow(t, 5./12.) - 0.055;
}
}
vec3 sRGB(vec3 color) {
return vec3(sRGB(color.r), sRGB(color.g), sRGB(color.b));
}
// --- shading ---
struct taggedFrag {
int id;
vec4 color;
vec3 pt;
vec3 normal;
};
taggedFrag[2] sort(taggedFrag a, taggedFrag b) {
taggedFrag[2] result;
if (a.pt.z > b.pt.z) {
result[0] = a;
result[1] = b;
} else {
result[0] = b;
result[1] = a;
}
return result;
}
taggedFrag sphere_shading(vecInv v, vec3 pt, vec3 base_color, int id) {
// the expression for normal needs to be checked. it's supposed to give the
// negative gradient of the lorentz product between the impact point vector
// and the sphere vector with respect to the coordinates of the impact
// point. i calculated it in my head and decided that the result looked good
// enough for now
vec3 normal = normalize(-v.sp + 2.*v.lt.s*pt);
float incidence = dot(normal, light_dir);
float illum = mix(0.4, 1.0, max(incidence, 0.0));
return taggedFrag(id, vec4(illum * base_color, opacity), pt, normal);
}
// --- ray-casting ---
// if `a/b` is less than this threshold, we approximate `a*u^2 + b*u + c` by
// the linear function `b*u + c`
const float DEG_THRESHOLD = 1e-9;
// the depths, represented as multiples of `dir`, where the line generated by
// `dir` hits the sphere represented by `v`. if both depths are positive, the
// smaller one is returned in the first component. if only one depth is
// positive, it could be returned in either component
vec2 sphere_cast(vecInv v, vec3 dir) {
float a = -v.lt.s * dot(dir, dir);
float b = dot(v.sp, dir);
float c = -v.lt.t;
float adjust = 4.*a*c/(b*b);
if (adjust < 1.) {
// as long as `b` is non-zero, the linear approximation of
//
// a*u^2 + b*u + c
//
// at `u = 0` will reach zero at a finite depth `u_lin`. the root of the
// quadratic adjacent to `u_lin` is stored in `lin_root`. if both roots
// have the same sign, `lin_root` will be the one closer to `u = 0`
float square_rect_ratio = 1. + sqrt(1. - adjust);
float lin_root = -(2.*c)/b / square_rect_ratio;
if (abs(a) > DEG_THRESHOLD * abs(b)) {
return vec2(lin_root, -b/(2.*a) * square_rect_ratio);
} else {
return vec2(lin_root, -1.);
}
} else {
// the line through `dir` misses the sphere completely
return vec2(-1., -1.);
}
}
void main() {
vec2 scr = (2.*gl_FragCoord.xy - resolution) / shortdim;
vec3 dir = vec3(focal_slope * scr, -1.);
// cast rays through the spheres
const int LAYER_MAX = 12;
taggedFrag frags [LAYER_MAX];
int layer_cnt = 0;
for (int id = 0; id < sphere_cnt; ++id) {
// find out where the ray hits the sphere
vec2 hit_depths = sphere_cast(sphere_list[id], dir);
// insertion-sort the fragments we hit into the fragment list
float dimming = 1.;
for (int side = 0; side < 2; ++side) {
float hit_z = -hit_depths[side];
if (0. > hit_z) {
for (int layer = layer_cnt; layer >= 0; --layer) {
if (layer < 1 || frags[layer-1].pt.z >= hit_z) {
// we're not as close to the screen as the fragment
// before the empty slot, so insert here
if (layer < LAYER_MAX) {
frags[layer] = sphere_shading(
sphere_list[id],
hit_depths[side] * dir,
dimming * color_list[id],
id
);
}
break;
} else {
// we're closer to the screen than the fragment before
// the empty slot, so move that fragment into the empty
// slot
frags[layer] = frags[layer-1];
}
}
layer_cnt = min(layer_cnt + 1, LAYER_MAX);
dimming = INTERIOR_DIMMING;
}
}
}
/* DEBUG */
// in debug mode, show the layer count instead of the shaded image
if (debug_mode) {
// at the bottom of the screen, show the color scale instead of the
// layer count
if (gl_FragCoord.y < 10.) layer_cnt = int(16. * gl_FragCoord.x / resolution.x);
// convert number to color
ivec3 bits = layer_cnt / ivec3(1, 2, 4);
vec3 color = mod(vec3(bits), 2.);
if (layer_cnt % 16 >= 8) {
color = mix(color, vec3(0.5), 0.5);
}
outColor = vec4(color, 1.);
return;
}
// highlight intersections and cusps
for (int i = layer_cnt-1; i >= 1; --i) {
// intersections
taggedFrag frag0 = frags[i];
taggedFrag frag1 = frags[i-1];
float ixn_sin = length(cross(frag0.normal, frag1.normal));
vec3 disp = frag0.pt - frag1.pt;
float ixn_dist = max(
abs(dot(frag1.normal, disp)),
abs(dot(frag0.normal, disp))
) / ixn_sin;
float ixn_highlight = 0.5 * highlight * (1. - smoothstep(2./3.*ixn_threshold, 1.5*ixn_threshold, ixn_dist));
frags[i].color = mix(frags[i].color, vec4(1.), ixn_highlight);
frags[i-1].color = mix(frags[i-1].color, vec4(1.), ixn_highlight);
// cusps
float cusp_cos = abs(dot(dir, frag0.normal));
float cusp_threshold = 2.*sqrt(ixn_threshold * sphere_list[frag0.id].lt.s);
float cusp_highlight = highlight * (1. - smoothstep(2./3.*cusp_threshold, 1.5*cusp_threshold, cusp_cos));
frags[i].color = mix(frags[i].color, vec4(1.), cusp_highlight);
}
// composite the sphere fragments
vec3 color = vec3(0.);
for (int i = layer_cnt-1; i >= layer_threshold; --i) {
if (frags[i].pt.z < 0.) {
vec4 frag_color = frags[i].color;
color = mix(color, frag_color.rgb, frag_color.a);
}
}
outColor = vec4(sRGB(color), 1.);
}

View File

@ -1,744 +0,0 @@
// based on the WebGL example in the `wasm-bindgen` guide
//
// https://rustwasm.github.io/wasm-bindgen/examples/webgl.html
//
// and this StackOverflow answer by wangdq
//
// https://stackoverflow.com/a/39684775
//
use core::array;
use nalgebra::{DMatrix, DVector, Rotation3, Vector3};
use sycamore::{prelude::*, motion::create_raf, rt::{JsCast, JsValue}};
use web_sys::{
console,
window,
KeyboardEvent,
WebGl2RenderingContext,
WebGlProgram,
WebGlShader,
WebGlUniformLocation
};
mod engine;
fn compile_shader(
context: &WebGl2RenderingContext,
shader_type: u32,
source: &str,
) -> WebGlShader {
let shader = context.create_shader(shader_type).unwrap();
context.shader_source(&shader, source);
context.compile_shader(&shader);
shader
}
fn get_uniform_array_locations<const N: usize>(
context: &WebGl2RenderingContext,
program: &WebGlProgram,
var_name: &str,
member_name_opt: Option<&str>
) -> [Option<WebGlUniformLocation>; N] {
array::from_fn(|n| {
let name = match member_name_opt {
Some(member_name) => format!("{var_name}[{n}].{member_name}"),
None => format!("{var_name}[{n}]")
};
context.get_uniform_location(&program, name.as_str())
})
}
// load the given data into the vertex input of the given name
fn bind_vertex_attrib(
context: &WebGl2RenderingContext,
index: u32,
size: i32,
data: &[f32]
) {
// create a data buffer and bind it to ARRAY_BUFFER
let buffer = context.create_buffer().unwrap();
context.bind_buffer(WebGl2RenderingContext::ARRAY_BUFFER, Some(&buffer));
// load the given data into the buffer. the function `Float32Array::view`
// creates a raw view into our module's `WebAssembly.Memory` buffer.
// allocating more memory will change the buffer, invalidating the view.
// that means we have to make sure we don't allocate any memory until the
// view is dropped
unsafe {
context.buffer_data_with_array_buffer_view(
WebGl2RenderingContext::ARRAY_BUFFER,
&js_sys::Float32Array::view(&data),
WebGl2RenderingContext::STATIC_DRAW,
);
}
// allow the target attribute to be used
context.enable_vertex_attrib_array(index);
// take whatever's bound to ARRAY_BUFFER---here, the data buffer created
// above---and bind it to the target attribute
//
// https://developer.mozilla.org/en-US/docs/Web/API/WebGLRenderingContext/vertexAttribPointer
//
context.vertex_attrib_pointer_with_i32(
index,
size,
WebGl2RenderingContext::FLOAT,
false, // don't normalize
0, // zero stride
0, // zero offset
);
}
fn push_gen_construction(
sphere_vec: &mut Vec<DVector<f64>>,
color_vec: &mut Vec<[f32; 3]>,
construction_to_world: &DMatrix<f64>,
ctrl_x: f64,
ctrl_y: f64,
radius_x: f64,
radius_y: f64
) {
// push spheres
sphere_vec.push(construction_to_world * engine::sphere(0.5, 0.5, ctrl_x, radius_x));
sphere_vec.push(construction_to_world * engine::sphere(-0.5, -0.5, ctrl_y, radius_y));
sphere_vec.push(construction_to_world * engine::sphere(-0.5, 0.5, 0.0, 0.75));
sphere_vec.push(construction_to_world * engine::sphere(0.5, -0.5, 0.0, 0.5));
sphere_vec.push(construction_to_world * engine::sphere(0.0, 0.15, 1.0, 0.25));
sphere_vec.push(construction_to_world * engine::sphere(0.0, -0.15, -1.0, 0.25));
// push colors
color_vec.push([1.00_f32, 0.25_f32, 0.00_f32]);
color_vec.push([0.00_f32, 0.25_f32, 1.00_f32]);
color_vec.push([0.25_f32, 0.00_f32, 1.00_f32]);
color_vec.push([0.25_f32, 1.00_f32, 0.00_f32]);
color_vec.push([0.75_f32, 0.75_f32, 0.00_f32]);
color_vec.push([0.00_f32, 0.75_f32, 0.50_f32]);
}
fn push_low_curv_construction(
sphere_vec: &mut Vec<DVector<f64>>,
color_vec: &mut Vec<[f32; 3]>,
construction_to_world: &DMatrix<f64>,
off1: f64,
off2: f64,
off3: f64,
curv1: f64,
curv2: f64,
curv3: f64,
) {
// push spheres
let a = 0.75_f64.sqrt();
sphere_vec.push(construction_to_world * engine::sphere(0.0, 0.0, 0.0, 1.0));
sphere_vec.push(construction_to_world * engine::sphere_with_offset(0.0, 0.0, 1.0, 0.0, 0.0));
sphere_vec.push(construction_to_world * engine::sphere_with_offset(1.0, 0.0, 0.0, off1, curv1));
sphere_vec.push(construction_to_world * engine::sphere_with_offset(-0.5, a, 0.0, off2, curv2));
sphere_vec.push(construction_to_world * engine::sphere_with_offset(-0.5, -a, 0.0, off3, curv3));
sphere_vec.push(construction_to_world * engine::sphere(-4.0/3.0, 0.0, 0.0, 1.0/3.0));
sphere_vec.push(construction_to_world * engine::sphere(2.0/3.0, -4.0/3.0 * a, 0.0, 1.0/3.0));
sphere_vec.push(construction_to_world * engine::sphere(2.0/3.0, 4.0/3.0 * a, 0.0, 1.0/3.0));
// push colors
color_vec.push([0.75_f32, 0.75_f32, 0.75_f32]);
color_vec.push([0.75_f32, 0.75_f32, 0.75_f32]);
color_vec.push([1.00_f32, 0.00_f32, 0.25_f32]);
color_vec.push([0.25_f32, 1.00_f32, 0.00_f32]);
color_vec.push([0.00_f32, 0.25_f32, 1.00_f32]);
color_vec.push([0.75_f32, 0.75_f32, 0.75_f32]);
color_vec.push([0.75_f32, 0.75_f32, 0.75_f32]);
color_vec.push([0.75_f32, 0.75_f32, 0.75_f32]);
}
#[derive(Clone, Copy, PartialEq)]
enum Tab {
GenTab,
LowCurvTab
}
fn main() {
// set up a config option that forwards panic messages to `console.error`
#[cfg(feature = "console_error_panic_hook")]
console_error_panic_hook::set_once();
sycamore::render(|| {
// tab selection
let tab_selection = create_signal(Tab::GenTab);
// navigation
let pitch_up = create_signal(0.0);
let pitch_down = create_signal(0.0);
let yaw_right = create_signal(0.0);
let yaw_left = create_signal(0.0);
let roll_ccw = create_signal(0.0);
let roll_cw = create_signal(0.0);
let zoom_in = create_signal(0.0);
let zoom_out = create_signal(0.0);
// controls for general example
let gen_controls = create_node_ref();
let ctrl_x = create_signal(0.0);
let ctrl_y = create_signal(0.0);
let radius_x = create_signal(1.0);
let radius_y = create_signal(1.0);
// controls for low-curvature example
let low_curv_controls = create_node_ref();
let curv1 = create_signal(0.0);
let curv2 = create_signal(0.0);
let curv3 = create_signal(0.0);
let off1 = create_signal(1.0);
let off2 = create_signal(1.0);
let off3 = create_signal(1.0);
// shared controls
let opacity = create_signal(0.5);
let highlight = create_signal(0.2);
let turntable = create_signal(false);
let layer_threshold = create_signal(0.0); /* DEBUG */
let debug_mode = create_signal(false); /* DEBUG */
/* INSTRUMENTS */
const SAMPLE_PERIOD: i32 = 60;
let mut last_sample_time = 0.0;
let mut frames_since_last_sample = 0;
let mean_frame_interval = create_signal(0.0);
// display
let display = create_node_ref();
// change listener
let scene_changed = create_signal(true);
create_effect(move || {
// track tab selection
tab_selection.track();
// track controls for general example
ctrl_x.track();
ctrl_y.track();
radius_x.track();
radius_y.track();
// track controls for low-curvature example
curv1.track();
curv2.track();
curv3.track();
off1.track();
off2.track();
off3.track();
// track shared controls
opacity.track();
highlight.track();
turntable.track();
layer_threshold.track();
debug_mode.track();
scene_changed.set(true);
});
on_mount(move || {
// tab listener
create_effect(move || {
// get the control panel nodes
let gen_controls_node = gen_controls.get::<DomNode>();
let low_curv_controls_node = low_curv_controls.get::<DomNode>();
// hide all the control panels
gen_controls_node.add_class("hidden");
low_curv_controls_node.add_class("hidden");
// show the selected control panel
match tab_selection.get() {
Tab::GenTab => gen_controls_node.remove_class("hidden"),
Tab::LowCurvTab => low_curv_controls_node.remove_class("hidden")
}
});
// create list of construction elements
const SPHERE_MAX: usize = 200;
let mut sphere_vec = Vec::<DVector<f64>>::new();
let mut color_vec = Vec::<[f32; 3]>::new();
// timing
let mut last_time = 0.0;
// scene parameters
const ROT_SPEED: f64 = 0.4; // in radians per second
const TURNTABLE_SPEED: f64 = 0.1; // in radians per second
const ZOOM_SPEED: f64 = 0.15;
let mut orientation = DMatrix::<f64>::identity(5, 5);
let mut rotation = DMatrix::<f64>::identity(5, 5);
let mut location_z: f64 = 5.0;
/* INSTRUMENTS */
let performance = window().unwrap().performance().unwrap();
// get the display canvas
let canvas = display
.get::<DomNode>()
.unchecked_into::<web_sys::HtmlCanvasElement>();
let ctx = canvas
.get_context("webgl2")
.unwrap()
.unwrap()
.dyn_into::<WebGl2RenderingContext>()
.unwrap();
// compile and attach the vertex and fragment shaders
let vertex_shader = compile_shader(
&ctx,
WebGl2RenderingContext::VERTEX_SHADER,
include_str!("identity.vert"),
);
let fragment_shader = compile_shader(
&ctx,
WebGl2RenderingContext::FRAGMENT_SHADER,
include_str!("inversive.frag"),
);
let program = ctx.create_program().unwrap();
ctx.attach_shader(&program, &vertex_shader);
ctx.attach_shader(&program, &fragment_shader);
ctx.link_program(&program);
let link_status = ctx
.get_program_parameter(&program, WebGl2RenderingContext::LINK_STATUS)
.as_bool()
.unwrap();
let link_msg = if link_status {
"Linked successfully"
} else {
"Linking failed"
};
console::log_1(&JsValue::from(link_msg));
ctx.use_program(Some(&program));
/* DEBUG */
// print the maximum number of vectors that can be passed as
// uniforms to a fragment shader. the OpenGL ES 3.0 standard
// requires this maximum to be at least 224, as discussed in the
// documentation of the GL_MAX_FRAGMENT_UNIFORM_VECTORS parameter
// here:
//
// https://registry.khronos.org/OpenGL-Refpages/es3.0/html/glGet.xhtml
//
// there are also other size limits. for example, on Aaron's
// machine, the the length of a float or genType array seems to be
// capped at 1024 elements
console::log_2(
&ctx.get_parameter(WebGl2RenderingContext::MAX_FRAGMENT_UNIFORM_VECTORS).unwrap(),
&JsValue::from("uniform vectors available")
);
// find indices of vertex attributes and uniforms
let position_index = ctx.get_attrib_location(&program, "position") as u32;
let sphere_cnt_loc = ctx.get_uniform_location(&program, "sphere_cnt");
let sphere_sp_locs = get_uniform_array_locations::<SPHERE_MAX>(
&ctx, &program, "sphere_list", Some("sp")
);
let sphere_lt_locs = get_uniform_array_locations::<SPHERE_MAX>(
&ctx, &program, "sphere_list", Some("lt")
);
let color_locs = get_uniform_array_locations::<SPHERE_MAX>(
&ctx, &program, "color_list", None
);
let resolution_loc = ctx.get_uniform_location(&program, "resolution");
let shortdim_loc = ctx.get_uniform_location(&program, "shortdim");
let opacity_loc = ctx.get_uniform_location(&program, "opacity");
let highlight_loc = ctx.get_uniform_location(&program, "highlight");
let layer_threshold_loc = ctx.get_uniform_location(&program, "layer_threshold");
let debug_mode_loc = ctx.get_uniform_location(&program, "debug_mode");
// create a vertex array and bind it to the graphics context
let vertex_array = ctx.create_vertex_array().unwrap();
ctx.bind_vertex_array(Some(&vertex_array));
// set the vertex positions
const VERTEX_CNT: usize = 6;
let positions: [f32; 3*VERTEX_CNT] = [
// northwest triangle
-1.0, -1.0, 0.0,
-1.0, 1.0, 0.0,
1.0, 1.0, 0.0,
// southeast triangle
-1.0, -1.0, 0.0,
1.0, 1.0, 0.0,
1.0, -1.0, 0.0
];
bind_vertex_attrib(&ctx, position_index, 3, &positions);
// set up a repainting routine
let (_, start_animation_loop, _) = create_raf(move || {
// get the time step
let time = performance.now();
let time_step = 0.001*(time - last_time);
last_time = time;
// get the navigation state
let pitch_up_val = pitch_up.get();
let pitch_down_val = pitch_down.get();
let yaw_right_val = yaw_right.get();
let yaw_left_val = yaw_left.get();
let roll_ccw_val = roll_ccw.get();
let roll_cw_val = roll_cw.get();
let zoom_in_val = zoom_in.get();
let zoom_out_val = zoom_out.get();
let turntable_val = turntable.get();
// update the construction's orientation
let ang_vel = {
let pitch = pitch_up_val - pitch_down_val;
let yaw = yaw_right_val - yaw_left_val;
let roll = roll_ccw_val - roll_cw_val;
let ang_vel_from_keyboard =
if pitch != 0.0 || yaw != 0.0 || roll != 0.0 {
ROT_SPEED * Vector3::new(-pitch, yaw, roll).normalize()
} else {
Vector3::zeros()
};
let ang_vel_from_turntable =
if turntable_val {
Vector3::new(0.0, TURNTABLE_SPEED, 0.0)
} else {
Vector3::zeros()
};
ang_vel_from_keyboard + ang_vel_from_turntable
};
let mut rotation_sp = rotation.fixed_view_mut::<3, 3>(0, 0);
rotation_sp.copy_from(
Rotation3::from_scaled_axis(time_step * ang_vel).matrix()
);
orientation = &rotation * &orientation;
// update the construction's location
let zoom = zoom_out_val - zoom_in_val;
location_z *= (time_step * ZOOM_SPEED * zoom).exp();
if scene_changed.get() {
/* INSTRUMENTS */
// measure mean frame interval
frames_since_last_sample += 1;
if frames_since_last_sample >= SAMPLE_PERIOD {
mean_frame_interval.set((time - last_sample_time) / (SAMPLE_PERIOD as f64));
last_sample_time = time;
frames_since_last_sample = 0;
}
// find the map from construction space to world space
let location = {
let u = -location_z;
DMatrix::from_column_slice(5, 5, &[
1.0, 0.0, 0.0, 0.0, 0.0,
0.0, 1.0, 0.0, 0.0, 0.0,
0.0, 0.0, 1.0, 0.0, u,
0.0, 0.0, 2.0*u, 1.0, u*u,
0.0, 0.0, 0.0, 0.0, 1.0
])
};
let construction_to_world = &location * &orientation;
// update the construction
sphere_vec.clear();
color_vec.clear();
match tab_selection.get() {
Tab::GenTab => push_gen_construction(
&mut sphere_vec,
&mut color_vec,
&construction_to_world,
ctrl_x.get(), ctrl_y.get(),
radius_x.get(), radius_y.get()
),
Tab::LowCurvTab => push_low_curv_construction(
&mut sphere_vec,
&mut color_vec,
&construction_to_world,
off1.get(), off2.get(), off3.get(),
curv1.get(), curv2.get(), curv3.get(),
)
};
// set the resolution
let width = canvas.width() as f32;
let height = canvas.height() as f32;
ctx.uniform2f(resolution_loc.as_ref(), width, height);
ctx.uniform1f(shortdim_loc.as_ref(), width.min(height));
// pass the construction
ctx.uniform1i(sphere_cnt_loc.as_ref(), sphere_vec.len() as i32);
for n in 0..sphere_vec.len() {
let v = &sphere_vec[n];
ctx.uniform3f(
sphere_sp_locs[n].as_ref(),
v[0] as f32, v[1] as f32, v[2] as f32
);
ctx.uniform2f(
sphere_lt_locs[n].as_ref(),
v[3] as f32, v[4] as f32
);
ctx.uniform3fv_with_f32_array(
color_locs[n].as_ref(),
&color_vec[n]
);
}
// pass the control parameters
ctx.uniform1f(opacity_loc.as_ref(), opacity.get() as f32);
ctx.uniform1f(highlight_loc.as_ref(), highlight.get() as f32);
ctx.uniform1i(layer_threshold_loc.as_ref(), layer_threshold.get() as i32);
ctx.uniform1i(debug_mode_loc.as_ref(), debug_mode.get() as i32);
// draw the scene
ctx.draw_arrays(WebGl2RenderingContext::TRIANGLES, 0, VERTEX_CNT as i32);
// clear scene change flag
scene_changed.set(
pitch_up_val != 0.0
|| pitch_down_val != 0.0
|| yaw_left_val != 0.0
|| yaw_right_val != 0.0
|| roll_cw_val != 0.0
|| roll_ccw_val != 0.0
|| zoom_in_val != 0.0
|| zoom_out_val != 0.0
|| turntable_val
);
} else {
frames_since_last_sample = 0;
mean_frame_interval.set(-1.0);
}
});
start_animation_loop();
});
let set_nav_signal = move |event: KeyboardEvent, value: f64| {
let mut navigating = true;
let shift = event.shift_key();
match event.key().as_str() {
"ArrowUp" if shift => zoom_in.set(value),
"ArrowDown" if shift => zoom_out.set(value),
"ArrowUp" => pitch_up.set(value),
"ArrowDown" => pitch_down.set(value),
"ArrowRight" if shift => roll_cw.set(value),
"ArrowLeft" if shift => roll_ccw.set(value),
"ArrowRight" => yaw_right.set(value),
"ArrowLeft" => yaw_left.set(value),
_ => navigating = false
};
if navigating {
scene_changed.set(true);
event.prevent_default();
}
};
view! {
div(id="app") {
div(class="tab-pane") {
label {
"General"
input(
type="radio",
name="tab",
prop:checked=tab_selection.get() == Tab::GenTab,
on:click=move |_| tab_selection.set(Tab::GenTab)
)
}
label {
"Low curvature"
input(
type="radio",
name="tab",
prop:checked=tab_selection.get() == Tab::LowCurvTab,
on:change=move |_| tab_selection.set(Tab::LowCurvTab)
)
}
}
div { "Mean frame interval: " (mean_frame_interval.get()) " ms" }
canvas(
ref=display,
width=600,
height=600,
tabindex=0,
on:keydown=move |event: KeyboardEvent| {
if event.key() == "Shift" {
roll_cw.set(yaw_right.get());
roll_ccw.set(yaw_left.get());
zoom_in.set(pitch_up.get());
zoom_out.set(pitch_down.get());
yaw_right.set(0.0);
yaw_left.set(0.0);
pitch_up.set(0.0);
pitch_down.set(0.0);
} else {
set_nav_signal(event, 1.0);
}
},
on:keyup=move |event: KeyboardEvent| {
if event.key() == "Shift" {
yaw_right.set(roll_cw.get());
yaw_left.set(roll_ccw.get());
pitch_up.set(zoom_in.get());
pitch_down.set(zoom_out.get());
roll_cw.set(0.0);
roll_ccw.set(0.0);
zoom_in.set(0.0);
zoom_out.set(0.0);
} else {
set_nav_signal(event, 0.0);
}
},
on:blur=move |_| {
pitch_up.set(0.0);
pitch_down.set(0.0);
yaw_right.set(0.0);
yaw_left.set(0.0);
roll_ccw.set(0.0);
roll_cw.set(0.0);
}
)
div(ref=gen_controls) {
label(class="control") {
span { "Sphere 0 depth" }
input(
type="range",
min=-1.0,
max=1.0,
step=0.001,
bind:valueAsNumber=ctrl_x
)
}
label(class="control") {
span { "Sphere 1 depth" }
input(
type="range",
min=-1.0,
max=1.0,
step=0.001,
bind:valueAsNumber=ctrl_y
)
}
label(class="control") {
span { "Sphere 0 radius" }
input(
type="range",
min=0.5,
max=1.5,
step=0.001,
bind:valueAsNumber=radius_x
)
}
label(class="control") {
span { "Sphere 1 radius" }
input(
type="range",
min=0.5,
max=1.5,
step=0.001,
bind:valueAsNumber=radius_y
)
}
}
div(ref=low_curv_controls) {
label(class="control") {
span { "Sphere 1 offset" }
input(
type="range",
min=-1.0,
max=1.0,
step=0.001,
bind:valueAsNumber=off1
)
}
label(class="control") {
span { "Sphere 2 offset" }
input(
type="range",
min=-1.0,
max=1.0,
step=0.001,
bind:valueAsNumber=off2
)
}
label(class="control") {
span { "Sphere 3 offset" }
input(
type="range",
min=-1.0,
max=1.0,
step=0.001,
bind:valueAsNumber=off3
)
}
label(class="control") {
span { "Sphere 1 curvature" }
input(
type="range",
min=0.0,
max=2.0,
step=0.001,
bind:valueAsNumber=curv1
)
}
label(class="control") {
span { "Sphere 2 curvature" }
input(
type="range",
min=0.0,
max=2.0,
step=0.001,
bind:valueAsNumber=curv2
)
}
label(class="control") {
span { "Sphere 3 curvature" }
input(
type="range",
min=0.0,
max=2.0,
step=0.001,
bind:valueAsNumber=curv3
)
}
}
label(class="control") {
span { "Opacity" }
input(
type="range",
max=1.0,
step=0.001,
bind:valueAsNumber=opacity
)
}
label(class="control") {
span { "Highlight" }
input(
type="range",
max=1.0,
step=0.001,
bind:valueAsNumber=highlight
)
}
label(class="control") {
span { "Turntable" }
input(
type="checkbox",
bind:checked=turntable
)
}
label(class="control") {
span { "Layer threshold" }
input(
type="range",
max=5.0,
step=1.0,
bind:valueAsNumber=layer_threshold
)
}
label(class="control") {
span { "Debug mode" }
input(
type="checkbox",
bind:checked=debug_mode
)
}
}
}
});
}

View File

@ -104,6 +104,10 @@ details[open]:has(li) .elt-switch::after {
font-style: italic; font-style: italic;
} }
.cst > input {
margin: 0px 8px 0px 0px;
}
/* display */ /* display */
canvas { canvas {

View File

@ -66,7 +66,8 @@ fn load_gen_assemb(assembly: &Assembly) {
assembly.elements_by_id.with_untracked(|elts_by_id| elts_by_id["gemini_a"]), assembly.elements_by_id.with_untracked(|elts_by_id| elts_by_id["gemini_a"]),
assembly.elements_by_id.with_untracked(|elts_by_id| elts_by_id["gemini_b"]) assembly.elements_by_id.with_untracked(|elts_by_id| elts_by_id["gemini_b"])
), ),
rep: 0.5 rep: 0.5,
active: create_signal(true)
} }
); );
} }
@ -211,7 +212,8 @@ pub fn AddRemove() -> View {
); );
state.assembly.insert_constraint(Constraint { state.assembly.insert_constraint(Constraint {
args: args, args: args,
rep: 0.0 rep: 0.0,
active: create_signal(true)
}); });
state.selection.update(|sel| sel.clear()); state.selection.update(|sel| sel.clear());

View File

@ -16,7 +16,8 @@ pub struct Element {
#[derive(Clone)] #[derive(Clone)]
pub struct Constraint { pub struct Constraint {
pub args: (usize, usize), pub args: (usize, usize),
pub rep: f64 pub rep: f64,
pub active: Signal<bool>
} }
// a complete, view-independent description of an assembly // a complete, view-independent description of an assembly

View File

@ -63,27 +63,13 @@ vec3 sRGB(vec3 color) {
// --- shading --- // --- shading ---
struct taggedFrag { struct Fragment {
int id;
vec4 color;
float highlight;
vec3 pt; vec3 pt;
vec3 normal; vec3 normal;
vec4 color;
}; };
taggedFrag[2] sort(taggedFrag a, taggedFrag b) { Fragment sphere_shading(vecInv v, vec3 pt, vec3 base_color) {
taggedFrag[2] result;
if (a.pt.z > b.pt.z) {
result[0] = a;
result[1] = b;
} else {
result[0] = b;
result[1] = a;
}
return result;
}
taggedFrag sphere_shading(vecInv v, vec3 pt, vec3 base_color, float highlight, int id) {
// the expression for normal needs to be checked. it's supposed to give the // the expression for normal needs to be checked. it's supposed to give the
// negative gradient of the lorentz product between the impact point vector // negative gradient of the lorentz product between the impact point vector
// and the sphere vector with respect to the coordinates of the impact // and the sphere vector with respect to the coordinates of the impact
@ -93,11 +79,26 @@ taggedFrag sphere_shading(vecInv v, vec3 pt, vec3 base_color, float highlight, i
float incidence = dot(normal, light_dir); float incidence = dot(normal, light_dir);
float illum = mix(0.4, 1.0, max(incidence, 0.0)); float illum = mix(0.4, 1.0, max(incidence, 0.0));
return taggedFrag(id, vec4(illum * base_color, opacity), highlight, pt, normal); return Fragment(pt, normal, vec4(illum * base_color, opacity));
}
float intersection_dist(Fragment a, Fragment b) {
float intersection_sin = length(cross(a.normal, b.normal));
vec3 disp = a.pt - b.pt;
return max(
abs(dot(a.normal, disp)),
abs(dot(b.normal, disp))
) / intersection_sin;
} }
// --- ray-casting --- // --- ray-casting ---
struct TaggedDepth {
float depth;
float dimming;
int id;
};
// if `a/b` is less than this threshold, we approximate `a*u^2 + b*u + c` by // if `a/b` is less than this threshold, we approximate `a*u^2 + b*u + c` by
// the linear function `b*u + c` // the linear function `b*u + c`
const float DEG_THRESHOLD = 1e-9; const float DEG_THRESHOLD = 1e-9;
@ -139,36 +140,29 @@ void main() {
// cast rays through the spheres // cast rays through the spheres
const int LAYER_MAX = 12; const int LAYER_MAX = 12;
taggedFrag frags [LAYER_MAX]; TaggedDepth top_hits [LAYER_MAX];
int layer_cnt = 0; int layer_cnt = 0;
for (int id = 0; id < sphere_cnt; ++id) { for (int id = 0; id < sphere_cnt; ++id) {
// find out where the ray hits the sphere // find out where the ray hits the sphere
vec2 hit_depths = sphere_cast(sphere_list[id], dir); vec2 hit_depths = sphere_cast(sphere_list[id], dir);
// insertion-sort the fragments we hit into the fragment list // insertion-sort the points we hit into the hit list
float dimming = 1.; float dimming = 1.;
for (int side = 0; side < 2; ++side) { for (int side = 0; side < 2; ++side) {
float hit_z = -hit_depths[side]; float depth = hit_depths[side];
if (0. > hit_z) { if (depth > 0.) {
for (int layer = layer_cnt; layer >= 0; --layer) { for (int layer = layer_cnt; layer >= 0; --layer) {
if (layer < 1 || frags[layer-1].pt.z >= hit_z) { if (layer < 1 || top_hits[layer-1].depth <= depth) {
// we're not as close to the screen as the fragment // we're not as close to the screen as the hit before
// before the empty slot, so insert here // the empty slot, so insert here
if (layer < LAYER_MAX) { if (layer < LAYER_MAX) {
frags[layer] = sphere_shading( top_hits[layer] = TaggedDepth(depth, dimming, id);
sphere_list[id],
hit_depths[side] * dir,
dimming * color_list[id],
highlight_list[id],
id
);
} }
break; break;
} else { } else {
// we're closer to the screen than the fragment before // we're closer to the screen than the hit before the
// the empty slot, so move that fragment into the empty // empty slot, so move that hit into the empty slot
// slot top_hits[layer] = top_hits[layer-1];
frags[layer] = frags[layer-1];
} }
} }
layer_cnt = min(layer_cnt + 1, LAYER_MAX); layer_cnt = min(layer_cnt + 1, LAYER_MAX);
@ -194,37 +188,47 @@ void main() {
return; return;
} }
// highlight intersections and cusps
for (int i = layer_cnt-1; i >= 1; --i) {
// intersections
taggedFrag frag0 = frags[i];
taggedFrag frag1 = frags[i-1];
float ixn_sin = length(cross(frag0.normal, frag1.normal));
vec3 disp = frag0.pt - frag1.pt;
float ixn_dist = max(
abs(dot(frag1.normal, disp)),
abs(dot(frag0.normal, disp))
) / ixn_sin;
float max_highlight = max(frags[i].highlight, frags[i-1].highlight);
float ixn_highlight = 0.5 * max_highlight * (1. - smoothstep(2./3.*ixn_threshold, 1.5*ixn_threshold, ixn_dist));
frags[i].color = mix(frags[i].color, vec4(1.), ixn_highlight);
frags[i-1].color = mix(frags[i-1].color, vec4(1.), ixn_highlight);
// cusps
float cusp_cos = abs(dot(dir, frag0.normal));
float cusp_threshold = 2.*sqrt(ixn_threshold * sphere_list[frag0.id].lt.s);
float highlight = frags[i].highlight;
float cusp_highlight = highlight * (1. - smoothstep(2./3.*cusp_threshold, 1.5*cusp_threshold, cusp_cos));
frags[i].color = mix(frags[i].color, vec4(1.), cusp_highlight);
}
// composite the sphere fragments // composite the sphere fragments
vec3 color = vec3(0.); vec3 color = vec3(0.);
for (int i = layer_cnt-1; i >= layer_threshold; --i) { int layer = layer_cnt - 1;
if (frags[i].pt.z < 0.) { TaggedDepth hit = top_hits[layer];
vec4 frag_color = frags[i].color; Fragment frag_next = sphere_shading(
color = mix(color, frag_color.rgb, frag_color.a); sphere_list[hit.id],
} hit.depth * dir,
hit.dimming * color_list[hit.id]
);
float highlight_next = highlight_list[hit.id];
--layer;
for (; layer >= layer_threshold; --layer) {
// load the current fragment
Fragment frag = frag_next;
float highlight = highlight_next;
// shade the next fragment
hit = top_hits[layer];
frag_next = sphere_shading(
sphere_list[hit.id],
hit.depth * dir,
hit.dimming * color_list[hit.id]
);
highlight_next = highlight_list[hit.id];
// highlight intersections
float ixn_dist = intersection_dist(frag, frag_next);
float max_highlight = max(highlight, highlight_next);
float ixn_highlight = 0.5 * max_highlight * (1. - smoothstep(2./3.*ixn_threshold, 1.5*ixn_threshold, ixn_dist));
frag.color = mix(frag.color, vec4(1.), ixn_highlight);
frag_next.color = mix(frag_next.color, vec4(1.), ixn_highlight);
// highlight cusps
float cusp_cos = abs(dot(dir, frag.normal));
float cusp_threshold = 2.*sqrt(ixn_threshold * sphere_list[hit.id].lt.s);
float cusp_highlight = highlight * (1. - smoothstep(2./3.*cusp_threshold, 1.5*cusp_threshold, cusp_cos));
frag.color = mix(frag.color, vec4(1.), cusp_highlight);
// composite the current fragment
color = mix(color, frag.color.rgb, frag.color.a);
} }
color = mix(color, frag_next.color.rgb, frag_next.color.a);
outColor = vec4(sRGB(color), 1.); outColor = vec4(sRGB(color), 1.);
} }

View File

@ -136,6 +136,7 @@ pub fn Outline() -> View {
let other_arg_label = assembly.elements.with(|elts| elts[other_arg].label.clone()); let other_arg_label = assembly.elements.with(|elts| elts[other_arg].label.clone());
view! { view! {
li(class="cst") { li(class="cst") {
input(r#type="checkbox", bind:checked=cst.active)
div(class="cst-label") { (other_arg_label) } div(class="cst-label") { (other_arg_label) }
div(class="cst-rep") { (cst.rep) } div(class="cst-rep") { (cst.rep) }
} }