Compare commits
7 Commits
18ebf3be2c
...
517fd327fa
Author | SHA1 | Date | |
---|---|---|---|
|
517fd327fa | ||
|
f1690b62e1 | ||
|
cca5a781c4 | ||
|
abe231126d | ||
|
ee1c691787 | ||
|
19907838ce | ||
|
e3120f7109 |
4
app-proto/inversive-display/.gitignore
vendored
4
app-proto/inversive-display/.gitignore
vendored
@ -1,4 +0,0 @@
|
||||
target
|
||||
dist
|
||||
profiling
|
||||
Cargo.lock
|
@ -1,40 +0,0 @@
|
||||
[package]
|
||||
name = "inversive-display"
|
||||
version = "0.1.0"
|
||||
authors = ["Aaron"]
|
||||
edition = "2021"
|
||||
|
||||
[features]
|
||||
default = ["console_error_panic_hook"]
|
||||
|
||||
[dependencies]
|
||||
js-sys = "0.3.70"
|
||||
nalgebra = "0.33.0"
|
||||
sycamore = "0.9.0-beta.2"
|
||||
|
||||
# The `console_error_panic_hook` crate provides better debugging of panics by
|
||||
# logging them with `console.error`. This is great for development, but requires
|
||||
# all the `std::fmt` and `std::panicking` infrastructure, so isn't great for
|
||||
# code size when deploying.
|
||||
console_error_panic_hook = { version = "0.1.7", optional = true }
|
||||
|
||||
[dependencies.web-sys]
|
||||
version = "0.3.69"
|
||||
features = [
|
||||
'HtmlCanvasElement',
|
||||
'Performance',
|
||||
'WebGl2RenderingContext',
|
||||
'WebGlBuffer',
|
||||
'WebGlProgram',
|
||||
'WebGlShader',
|
||||
'WebGlUniformLocation',
|
||||
'WebGlVertexArrayObject',
|
||||
'Window'
|
||||
]
|
||||
|
||||
[dev-dependencies]
|
||||
wasm-bindgen-test = "0.3.34"
|
||||
|
||||
[profile.release]
|
||||
opt-level = "s" # optimize for small code size
|
||||
debug = true # include debug symbols
|
@ -1,9 +0,0 @@
|
||||
<!DOCTYPE html>
|
||||
<html>
|
||||
<head>
|
||||
<meta charset="utf-8"/>
|
||||
<title>Inversive display</title>
|
||||
<link data-trunk rel="css" href="main.css"/>
|
||||
</head>
|
||||
<body></body>
|
||||
</html>
|
@ -1,74 +0,0 @@
|
||||
body {
|
||||
margin-left: 20px;
|
||||
margin-top: 20px;
|
||||
color: #fcfcfc;
|
||||
background-color: #202020;
|
||||
}
|
||||
|
||||
#app {
|
||||
display: flex;
|
||||
flex-direction: column;
|
||||
width: 600px;
|
||||
}
|
||||
|
||||
canvas {
|
||||
float: left;
|
||||
background-color: #020202;
|
||||
border: 1px solid #555;
|
||||
border-radius: 10px;
|
||||
margin-top: 5px;
|
||||
}
|
||||
|
||||
canvas:focus {
|
||||
border-color: #aaa;
|
||||
}
|
||||
|
||||
.hidden {
|
||||
display: none;
|
||||
}
|
||||
|
||||
.control, .tab-pane {
|
||||
display: flex;
|
||||
flex-direction: row;
|
||||
width: 600px;
|
||||
}
|
||||
|
||||
input[type="radio"] {
|
||||
appearance: none;
|
||||
width: 0px;
|
||||
height: 0px;
|
||||
padding: 0px;
|
||||
margin: 0px;
|
||||
outline: none;
|
||||
}
|
||||
|
||||
.tab-pane > label {
|
||||
border: 1px solid #aaa;
|
||||
border-radius: 5px;
|
||||
text-align: center;
|
||||
padding: 5px;
|
||||
margin-right: 10px;
|
||||
margin-bottom: 5px;
|
||||
}
|
||||
|
||||
.tab-pane > label:has(:checked) {
|
||||
border-color: #fcfcfc;
|
||||
background-color: #555;
|
||||
}
|
||||
|
||||
.tab-pane > label:has(:focus-visible) {
|
||||
outline: medium auto currentColor;
|
||||
}
|
||||
|
||||
.tab-pane > label:hover:not(:has(:checked)) {
|
||||
border-color: #bbb;
|
||||
background-color: #333;
|
||||
}
|
||||
|
||||
.control > span {
|
||||
width: 170px;
|
||||
}
|
||||
|
||||
input {
|
||||
flex-grow: 1;
|
||||
}
|
@ -1,27 +0,0 @@
|
||||
use nalgebra::DVector;
|
||||
|
||||
// the sphere with the given center and radius, with inward-pointing normals
|
||||
pub fn sphere(center_x: f64, center_y: f64, center_z: f64, radius: f64) -> DVector<f64> {
|
||||
let center_norm_sq = center_x * center_x + center_y * center_y + center_z * center_z;
|
||||
DVector::from_column_slice(&[
|
||||
center_x / radius,
|
||||
center_y / radius,
|
||||
center_z / radius,
|
||||
0.5 / radius,
|
||||
0.5 * (center_norm_sq / radius - radius)
|
||||
])
|
||||
}
|
||||
|
||||
// the sphere of curvature `curv` whose closest point to the origin has position
|
||||
// `off * dir` and normal `dir`, where `dir` is a unit vector. setting the
|
||||
// curvature to zero gives a plane
|
||||
pub fn sphere_with_offset(dir_x: f64, dir_y: f64, dir_z: f64, off: f64, curv: f64) -> DVector<f64> {
|
||||
let norm_sp = 1.0 + off * curv;
|
||||
DVector::from_column_slice(&[
|
||||
norm_sp * dir_x,
|
||||
norm_sp * dir_y,
|
||||
norm_sp * dir_z,
|
||||
0.5 * curv,
|
||||
off * (1.0 + 0.5 * off * curv)
|
||||
])
|
||||
}
|
@ -1,7 +0,0 @@
|
||||
#version 300 es
|
||||
|
||||
in vec4 position;
|
||||
|
||||
void main() {
|
||||
gl_Position = position;
|
||||
}
|
@ -1,226 +0,0 @@
|
||||
#version 300 es
|
||||
|
||||
precision highp float;
|
||||
|
||||
out vec4 outColor;
|
||||
|
||||
// --- inversive geometry ---
|
||||
|
||||
struct vecInv {
|
||||
vec3 sp;
|
||||
vec2 lt;
|
||||
};
|
||||
|
||||
// --- uniforms ---
|
||||
|
||||
// construction
|
||||
const int SPHERE_MAX = 200;
|
||||
uniform int sphere_cnt;
|
||||
uniform vecInv sphere_list[SPHERE_MAX];
|
||||
uniform vec3 color_list[SPHERE_MAX];
|
||||
|
||||
// view
|
||||
uniform vec2 resolution;
|
||||
uniform float shortdim;
|
||||
|
||||
// controls
|
||||
uniform float opacity;
|
||||
uniform float highlight;
|
||||
uniform int layer_threshold;
|
||||
uniform bool debug_mode;
|
||||
|
||||
// light and camera
|
||||
const float focal_slope = 0.3;
|
||||
const vec3 light_dir = normalize(vec3(2., 2., 1.));
|
||||
const float ixn_threshold = 0.005;
|
||||
const float INTERIOR_DIMMING = 0.7;
|
||||
|
||||
// --- sRGB ---
|
||||
|
||||
// map colors from RGB space to sRGB space, as specified in the sRGB standard
|
||||
// (IEC 61966-2-1:1999)
|
||||
//
|
||||
// https://www.color.org/sRGB.pdf
|
||||
// https://www.color.org/chardata/rgb/srgb.xalter
|
||||
//
|
||||
// in RGB space, color value is proportional to light intensity, so linear
|
||||
// color-vector interpolation corresponds to physical light mixing. in sRGB
|
||||
// space, the color encoding used by many monitors, we use more of the value
|
||||
// interval to represent low intensities, and less of the interval to represent
|
||||
// high intensities. this improves color quantization
|
||||
|
||||
float sRGB(float t) {
|
||||
if (t <= 0.0031308) {
|
||||
return 12.92*t;
|
||||
} else {
|
||||
return 1.055*pow(t, 5./12.) - 0.055;
|
||||
}
|
||||
}
|
||||
|
||||
vec3 sRGB(vec3 color) {
|
||||
return vec3(sRGB(color.r), sRGB(color.g), sRGB(color.b));
|
||||
}
|
||||
|
||||
// --- shading ---
|
||||
|
||||
struct taggedFrag {
|
||||
int id;
|
||||
vec4 color;
|
||||
vec3 pt;
|
||||
vec3 normal;
|
||||
};
|
||||
|
||||
taggedFrag[2] sort(taggedFrag a, taggedFrag b) {
|
||||
taggedFrag[2] result;
|
||||
if (a.pt.z > b.pt.z) {
|
||||
result[0] = a;
|
||||
result[1] = b;
|
||||
} else {
|
||||
result[0] = b;
|
||||
result[1] = a;
|
||||
}
|
||||
return result;
|
||||
}
|
||||
|
||||
taggedFrag sphere_shading(vecInv v, vec3 pt, vec3 base_color, int id) {
|
||||
// the expression for normal needs to be checked. it's supposed to give the
|
||||
// negative gradient of the lorentz product between the impact point vector
|
||||
// and the sphere vector with respect to the coordinates of the impact
|
||||
// point. i calculated it in my head and decided that the result looked good
|
||||
// enough for now
|
||||
vec3 normal = normalize(-v.sp + 2.*v.lt.s*pt);
|
||||
|
||||
float incidence = dot(normal, light_dir);
|
||||
float illum = mix(0.4, 1.0, max(incidence, 0.0));
|
||||
return taggedFrag(id, vec4(illum * base_color, opacity), pt, normal);
|
||||
}
|
||||
|
||||
// --- ray-casting ---
|
||||
|
||||
// if `a/b` is less than this threshold, we approximate `a*u^2 + b*u + c` by
|
||||
// the linear function `b*u + c`
|
||||
const float DEG_THRESHOLD = 1e-9;
|
||||
|
||||
// the depths, represented as multiples of `dir`, where the line generated by
|
||||
// `dir` hits the sphere represented by `v`. if both depths are positive, the
|
||||
// smaller one is returned in the first component. if only one depth is
|
||||
// positive, it could be returned in either component
|
||||
vec2 sphere_cast(vecInv v, vec3 dir) {
|
||||
float a = -v.lt.s * dot(dir, dir);
|
||||
float b = dot(v.sp, dir);
|
||||
float c = -v.lt.t;
|
||||
|
||||
float adjust = 4.*a*c/(b*b);
|
||||
if (adjust < 1.) {
|
||||
// as long as `b` is non-zero, the linear approximation of
|
||||
//
|
||||
// a*u^2 + b*u + c
|
||||
//
|
||||
// at `u = 0` will reach zero at a finite depth `u_lin`. the root of the
|
||||
// quadratic adjacent to `u_lin` is stored in `lin_root`. if both roots
|
||||
// have the same sign, `lin_root` will be the one closer to `u = 0`
|
||||
float square_rect_ratio = 1. + sqrt(1. - adjust);
|
||||
float lin_root = -(2.*c)/b / square_rect_ratio;
|
||||
if (abs(a) > DEG_THRESHOLD * abs(b)) {
|
||||
return vec2(lin_root, -b/(2.*a) * square_rect_ratio);
|
||||
} else {
|
||||
return vec2(lin_root, -1.);
|
||||
}
|
||||
} else {
|
||||
// the line through `dir` misses the sphere completely
|
||||
return vec2(-1., -1.);
|
||||
}
|
||||
}
|
||||
|
||||
void main() {
|
||||
vec2 scr = (2.*gl_FragCoord.xy - resolution) / shortdim;
|
||||
vec3 dir = vec3(focal_slope * scr, -1.);
|
||||
|
||||
// cast rays through the spheres
|
||||
const int LAYER_MAX = 12;
|
||||
taggedFrag frags [LAYER_MAX];
|
||||
int layer_cnt = 0;
|
||||
for (int id = 0; id < sphere_cnt; ++id) {
|
||||
// find out where the ray hits the sphere
|
||||
vec2 hit_depths = sphere_cast(sphere_list[id], dir);
|
||||
|
||||
// insertion-sort the fragments we hit into the fragment list
|
||||
float dimming = 1.;
|
||||
for (int side = 0; side < 2; ++side) {
|
||||
float hit_z = -hit_depths[side];
|
||||
if (0. > hit_z) {
|
||||
for (int layer = layer_cnt; layer >= 0; --layer) {
|
||||
if (layer < 1 || frags[layer-1].pt.z >= hit_z) {
|
||||
// we're not as close to the screen as the fragment
|
||||
// before the empty slot, so insert here
|
||||
if (layer < LAYER_MAX) {
|
||||
frags[layer] = sphere_shading(
|
||||
sphere_list[id],
|
||||
hit_depths[side] * dir,
|
||||
dimming * color_list[id],
|
||||
id
|
||||
);
|
||||
}
|
||||
break;
|
||||
} else {
|
||||
// we're closer to the screen than the fragment before
|
||||
// the empty slot, so move that fragment into the empty
|
||||
// slot
|
||||
frags[layer] = frags[layer-1];
|
||||
}
|
||||
}
|
||||
layer_cnt = min(layer_cnt + 1, LAYER_MAX);
|
||||
dimming = INTERIOR_DIMMING;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/* DEBUG */
|
||||
// in debug mode, show the layer count instead of the shaded image
|
||||
if (debug_mode) {
|
||||
// at the bottom of the screen, show the color scale instead of the
|
||||
// layer count
|
||||
if (gl_FragCoord.y < 10.) layer_cnt = int(16. * gl_FragCoord.x / resolution.x);
|
||||
|
||||
// convert number to color
|
||||
ivec3 bits = layer_cnt / ivec3(1, 2, 4);
|
||||
vec3 color = mod(vec3(bits), 2.);
|
||||
if (layer_cnt % 16 >= 8) {
|
||||
color = mix(color, vec3(0.5), 0.5);
|
||||
}
|
||||
outColor = vec4(color, 1.);
|
||||
return;
|
||||
}
|
||||
|
||||
// highlight intersections and cusps
|
||||
for (int i = layer_cnt-1; i >= 1; --i) {
|
||||
// intersections
|
||||
taggedFrag frag0 = frags[i];
|
||||
taggedFrag frag1 = frags[i-1];
|
||||
float ixn_sin = length(cross(frag0.normal, frag1.normal));
|
||||
vec3 disp = frag0.pt - frag1.pt;
|
||||
float ixn_dist = max(
|
||||
abs(dot(frag1.normal, disp)),
|
||||
abs(dot(frag0.normal, disp))
|
||||
) / ixn_sin;
|
||||
float ixn_highlight = 0.5 * highlight * (1. - smoothstep(2./3.*ixn_threshold, 1.5*ixn_threshold, ixn_dist));
|
||||
frags[i].color = mix(frags[i].color, vec4(1.), ixn_highlight);
|
||||
frags[i-1].color = mix(frags[i-1].color, vec4(1.), ixn_highlight);
|
||||
|
||||
// cusps
|
||||
float cusp_cos = abs(dot(dir, frag0.normal));
|
||||
float cusp_threshold = 2.*sqrt(ixn_threshold * sphere_list[frag0.id].lt.s);
|
||||
float cusp_highlight = highlight * (1. - smoothstep(2./3.*cusp_threshold, 1.5*cusp_threshold, cusp_cos));
|
||||
frags[i].color = mix(frags[i].color, vec4(1.), cusp_highlight);
|
||||
}
|
||||
|
||||
// composite the sphere fragments
|
||||
vec3 color = vec3(0.);
|
||||
for (int i = layer_cnt-1; i >= layer_threshold; --i) {
|
||||
if (frags[i].pt.z < 0.) {
|
||||
vec4 frag_color = frags[i].color;
|
||||
color = mix(color, frag_color.rgb, frag_color.a);
|
||||
}
|
||||
}
|
||||
outColor = vec4(sRGB(color), 1.);
|
||||
}
|
@ -1,744 +0,0 @@
|
||||
// based on the WebGL example in the `wasm-bindgen` guide
|
||||
//
|
||||
// https://rustwasm.github.io/wasm-bindgen/examples/webgl.html
|
||||
//
|
||||
// and this StackOverflow answer by wangdq
|
||||
//
|
||||
// https://stackoverflow.com/a/39684775
|
||||
//
|
||||
|
||||
use core::array;
|
||||
use nalgebra::{DMatrix, DVector, Rotation3, Vector3};
|
||||
use sycamore::{prelude::*, motion::create_raf, rt::{JsCast, JsValue}};
|
||||
use web_sys::{
|
||||
console,
|
||||
window,
|
||||
KeyboardEvent,
|
||||
WebGl2RenderingContext,
|
||||
WebGlProgram,
|
||||
WebGlShader,
|
||||
WebGlUniformLocation
|
||||
};
|
||||
|
||||
mod engine;
|
||||
|
||||
fn compile_shader(
|
||||
context: &WebGl2RenderingContext,
|
||||
shader_type: u32,
|
||||
source: &str,
|
||||
) -> WebGlShader {
|
||||
let shader = context.create_shader(shader_type).unwrap();
|
||||
context.shader_source(&shader, source);
|
||||
context.compile_shader(&shader);
|
||||
shader
|
||||
}
|
||||
|
||||
fn get_uniform_array_locations<const N: usize>(
|
||||
context: &WebGl2RenderingContext,
|
||||
program: &WebGlProgram,
|
||||
var_name: &str,
|
||||
member_name_opt: Option<&str>
|
||||
) -> [Option<WebGlUniformLocation>; N] {
|
||||
array::from_fn(|n| {
|
||||
let name = match member_name_opt {
|
||||
Some(member_name) => format!("{var_name}[{n}].{member_name}"),
|
||||
None => format!("{var_name}[{n}]")
|
||||
};
|
||||
context.get_uniform_location(&program, name.as_str())
|
||||
})
|
||||
}
|
||||
|
||||
// load the given data into the vertex input of the given name
|
||||
fn bind_vertex_attrib(
|
||||
context: &WebGl2RenderingContext,
|
||||
index: u32,
|
||||
size: i32,
|
||||
data: &[f32]
|
||||
) {
|
||||
// create a data buffer and bind it to ARRAY_BUFFER
|
||||
let buffer = context.create_buffer().unwrap();
|
||||
context.bind_buffer(WebGl2RenderingContext::ARRAY_BUFFER, Some(&buffer));
|
||||
|
||||
// load the given data into the buffer. the function `Float32Array::view`
|
||||
// creates a raw view into our module's `WebAssembly.Memory` buffer.
|
||||
// allocating more memory will change the buffer, invalidating the view.
|
||||
// that means we have to make sure we don't allocate any memory until the
|
||||
// view is dropped
|
||||
unsafe {
|
||||
context.buffer_data_with_array_buffer_view(
|
||||
WebGl2RenderingContext::ARRAY_BUFFER,
|
||||
&js_sys::Float32Array::view(&data),
|
||||
WebGl2RenderingContext::STATIC_DRAW,
|
||||
);
|
||||
}
|
||||
|
||||
// allow the target attribute to be used
|
||||
context.enable_vertex_attrib_array(index);
|
||||
|
||||
// take whatever's bound to ARRAY_BUFFER---here, the data buffer created
|
||||
// above---and bind it to the target attribute
|
||||
//
|
||||
// https://developer.mozilla.org/en-US/docs/Web/API/WebGLRenderingContext/vertexAttribPointer
|
||||
//
|
||||
context.vertex_attrib_pointer_with_i32(
|
||||
index,
|
||||
size,
|
||||
WebGl2RenderingContext::FLOAT,
|
||||
false, // don't normalize
|
||||
0, // zero stride
|
||||
0, // zero offset
|
||||
);
|
||||
}
|
||||
|
||||
fn push_gen_construction(
|
||||
sphere_vec: &mut Vec<DVector<f64>>,
|
||||
color_vec: &mut Vec<[f32; 3]>,
|
||||
construction_to_world: &DMatrix<f64>,
|
||||
ctrl_x: f64,
|
||||
ctrl_y: f64,
|
||||
radius_x: f64,
|
||||
radius_y: f64
|
||||
) {
|
||||
// push spheres
|
||||
sphere_vec.push(construction_to_world * engine::sphere(0.5, 0.5, ctrl_x, radius_x));
|
||||
sphere_vec.push(construction_to_world * engine::sphere(-0.5, -0.5, ctrl_y, radius_y));
|
||||
sphere_vec.push(construction_to_world * engine::sphere(-0.5, 0.5, 0.0, 0.75));
|
||||
sphere_vec.push(construction_to_world * engine::sphere(0.5, -0.5, 0.0, 0.5));
|
||||
sphere_vec.push(construction_to_world * engine::sphere(0.0, 0.15, 1.0, 0.25));
|
||||
sphere_vec.push(construction_to_world * engine::sphere(0.0, -0.15, -1.0, 0.25));
|
||||
|
||||
// push colors
|
||||
color_vec.push([1.00_f32, 0.25_f32, 0.00_f32]);
|
||||
color_vec.push([0.00_f32, 0.25_f32, 1.00_f32]);
|
||||
color_vec.push([0.25_f32, 0.00_f32, 1.00_f32]);
|
||||
color_vec.push([0.25_f32, 1.00_f32, 0.00_f32]);
|
||||
color_vec.push([0.75_f32, 0.75_f32, 0.00_f32]);
|
||||
color_vec.push([0.00_f32, 0.75_f32, 0.50_f32]);
|
||||
}
|
||||
|
||||
fn push_low_curv_construction(
|
||||
sphere_vec: &mut Vec<DVector<f64>>,
|
||||
color_vec: &mut Vec<[f32; 3]>,
|
||||
construction_to_world: &DMatrix<f64>,
|
||||
off1: f64,
|
||||
off2: f64,
|
||||
off3: f64,
|
||||
curv1: f64,
|
||||
curv2: f64,
|
||||
curv3: f64,
|
||||
) {
|
||||
// push spheres
|
||||
let a = 0.75_f64.sqrt();
|
||||
sphere_vec.push(construction_to_world * engine::sphere(0.0, 0.0, 0.0, 1.0));
|
||||
sphere_vec.push(construction_to_world * engine::sphere_with_offset(0.0, 0.0, 1.0, 0.0, 0.0));
|
||||
sphere_vec.push(construction_to_world * engine::sphere_with_offset(1.0, 0.0, 0.0, off1, curv1));
|
||||
sphere_vec.push(construction_to_world * engine::sphere_with_offset(-0.5, a, 0.0, off2, curv2));
|
||||
sphere_vec.push(construction_to_world * engine::sphere_with_offset(-0.5, -a, 0.0, off3, curv3));
|
||||
sphere_vec.push(construction_to_world * engine::sphere(-4.0/3.0, 0.0, 0.0, 1.0/3.0));
|
||||
sphere_vec.push(construction_to_world * engine::sphere(2.0/3.0, -4.0/3.0 * a, 0.0, 1.0/3.0));
|
||||
sphere_vec.push(construction_to_world * engine::sphere(2.0/3.0, 4.0/3.0 * a, 0.0, 1.0/3.0));
|
||||
|
||||
// push colors
|
||||
color_vec.push([0.75_f32, 0.75_f32, 0.75_f32]);
|
||||
color_vec.push([0.75_f32, 0.75_f32, 0.75_f32]);
|
||||
color_vec.push([1.00_f32, 0.00_f32, 0.25_f32]);
|
||||
color_vec.push([0.25_f32, 1.00_f32, 0.00_f32]);
|
||||
color_vec.push([0.00_f32, 0.25_f32, 1.00_f32]);
|
||||
color_vec.push([0.75_f32, 0.75_f32, 0.75_f32]);
|
||||
color_vec.push([0.75_f32, 0.75_f32, 0.75_f32]);
|
||||
color_vec.push([0.75_f32, 0.75_f32, 0.75_f32]);
|
||||
}
|
||||
|
||||
#[derive(Clone, Copy, PartialEq)]
|
||||
enum Tab {
|
||||
GenTab,
|
||||
LowCurvTab
|
||||
}
|
||||
|
||||
fn main() {
|
||||
// set up a config option that forwards panic messages to `console.error`
|
||||
#[cfg(feature = "console_error_panic_hook")]
|
||||
console_error_panic_hook::set_once();
|
||||
|
||||
sycamore::render(|| {
|
||||
// tab selection
|
||||
let tab_selection = create_signal(Tab::GenTab);
|
||||
|
||||
// navigation
|
||||
let pitch_up = create_signal(0.0);
|
||||
let pitch_down = create_signal(0.0);
|
||||
let yaw_right = create_signal(0.0);
|
||||
let yaw_left = create_signal(0.0);
|
||||
let roll_ccw = create_signal(0.0);
|
||||
let roll_cw = create_signal(0.0);
|
||||
let zoom_in = create_signal(0.0);
|
||||
let zoom_out = create_signal(0.0);
|
||||
|
||||
// controls for general example
|
||||
let gen_controls = create_node_ref();
|
||||
let ctrl_x = create_signal(0.0);
|
||||
let ctrl_y = create_signal(0.0);
|
||||
let radius_x = create_signal(1.0);
|
||||
let radius_y = create_signal(1.0);
|
||||
|
||||
// controls for low-curvature example
|
||||
let low_curv_controls = create_node_ref();
|
||||
let curv1 = create_signal(0.0);
|
||||
let curv2 = create_signal(0.0);
|
||||
let curv3 = create_signal(0.0);
|
||||
let off1 = create_signal(1.0);
|
||||
let off2 = create_signal(1.0);
|
||||
let off3 = create_signal(1.0);
|
||||
|
||||
// shared controls
|
||||
let opacity = create_signal(0.5);
|
||||
let highlight = create_signal(0.2);
|
||||
let turntable = create_signal(false);
|
||||
let layer_threshold = create_signal(0.0); /* DEBUG */
|
||||
let debug_mode = create_signal(false); /* DEBUG */
|
||||
|
||||
/* INSTRUMENTS */
|
||||
const SAMPLE_PERIOD: i32 = 60;
|
||||
let mut last_sample_time = 0.0;
|
||||
let mut frames_since_last_sample = 0;
|
||||
let mean_frame_interval = create_signal(0.0);
|
||||
|
||||
// display
|
||||
let display = create_node_ref();
|
||||
|
||||
// change listener
|
||||
let scene_changed = create_signal(true);
|
||||
create_effect(move || {
|
||||
// track tab selection
|
||||
tab_selection.track();
|
||||
|
||||
// track controls for general example
|
||||
ctrl_x.track();
|
||||
ctrl_y.track();
|
||||
radius_x.track();
|
||||
radius_y.track();
|
||||
|
||||
// track controls for low-curvature example
|
||||
curv1.track();
|
||||
curv2.track();
|
||||
curv3.track();
|
||||
off1.track();
|
||||
off2.track();
|
||||
off3.track();
|
||||
|
||||
// track shared controls
|
||||
opacity.track();
|
||||
highlight.track();
|
||||
turntable.track();
|
||||
layer_threshold.track();
|
||||
debug_mode.track();
|
||||
|
||||
scene_changed.set(true);
|
||||
});
|
||||
|
||||
on_mount(move || {
|
||||
// tab listener
|
||||
create_effect(move || {
|
||||
// get the control panel nodes
|
||||
let gen_controls_node = gen_controls.get::<DomNode>();
|
||||
let low_curv_controls_node = low_curv_controls.get::<DomNode>();
|
||||
|
||||
// hide all the control panels
|
||||
gen_controls_node.add_class("hidden");
|
||||
low_curv_controls_node.add_class("hidden");
|
||||
|
||||
// show the selected control panel
|
||||
match tab_selection.get() {
|
||||
Tab::GenTab => gen_controls_node.remove_class("hidden"),
|
||||
Tab::LowCurvTab => low_curv_controls_node.remove_class("hidden")
|
||||
}
|
||||
});
|
||||
|
||||
// create list of construction elements
|
||||
const SPHERE_MAX: usize = 200;
|
||||
let mut sphere_vec = Vec::<DVector<f64>>::new();
|
||||
let mut color_vec = Vec::<[f32; 3]>::new();
|
||||
|
||||
// timing
|
||||
let mut last_time = 0.0;
|
||||
|
||||
// scene parameters
|
||||
const ROT_SPEED: f64 = 0.4; // in radians per second
|
||||
const TURNTABLE_SPEED: f64 = 0.1; // in radians per second
|
||||
const ZOOM_SPEED: f64 = 0.15;
|
||||
let mut orientation = DMatrix::<f64>::identity(5, 5);
|
||||
let mut rotation = DMatrix::<f64>::identity(5, 5);
|
||||
let mut location_z: f64 = 5.0;
|
||||
|
||||
/* INSTRUMENTS */
|
||||
let performance = window().unwrap().performance().unwrap();
|
||||
|
||||
// get the display canvas
|
||||
let canvas = display
|
||||
.get::<DomNode>()
|
||||
.unchecked_into::<web_sys::HtmlCanvasElement>();
|
||||
let ctx = canvas
|
||||
.get_context("webgl2")
|
||||
.unwrap()
|
||||
.unwrap()
|
||||
.dyn_into::<WebGl2RenderingContext>()
|
||||
.unwrap();
|
||||
|
||||
// compile and attach the vertex and fragment shaders
|
||||
let vertex_shader = compile_shader(
|
||||
&ctx,
|
||||
WebGl2RenderingContext::VERTEX_SHADER,
|
||||
include_str!("identity.vert"),
|
||||
);
|
||||
let fragment_shader = compile_shader(
|
||||
&ctx,
|
||||
WebGl2RenderingContext::FRAGMENT_SHADER,
|
||||
include_str!("inversive.frag"),
|
||||
);
|
||||
let program = ctx.create_program().unwrap();
|
||||
ctx.attach_shader(&program, &vertex_shader);
|
||||
ctx.attach_shader(&program, &fragment_shader);
|
||||
ctx.link_program(&program);
|
||||
let link_status = ctx
|
||||
.get_program_parameter(&program, WebGl2RenderingContext::LINK_STATUS)
|
||||
.as_bool()
|
||||
.unwrap();
|
||||
let link_msg = if link_status {
|
||||
"Linked successfully"
|
||||
} else {
|
||||
"Linking failed"
|
||||
};
|
||||
console::log_1(&JsValue::from(link_msg));
|
||||
ctx.use_program(Some(&program));
|
||||
|
||||
/* DEBUG */
|
||||
// print the maximum number of vectors that can be passed as
|
||||
// uniforms to a fragment shader. the OpenGL ES 3.0 standard
|
||||
// requires this maximum to be at least 224, as discussed in the
|
||||
// documentation of the GL_MAX_FRAGMENT_UNIFORM_VECTORS parameter
|
||||
// here:
|
||||
//
|
||||
// https://registry.khronos.org/OpenGL-Refpages/es3.0/html/glGet.xhtml
|
||||
//
|
||||
// there are also other size limits. for example, on Aaron's
|
||||
// machine, the the length of a float or genType array seems to be
|
||||
// capped at 1024 elements
|
||||
console::log_2(
|
||||
&ctx.get_parameter(WebGl2RenderingContext::MAX_FRAGMENT_UNIFORM_VECTORS).unwrap(),
|
||||
&JsValue::from("uniform vectors available")
|
||||
);
|
||||
|
||||
// find indices of vertex attributes and uniforms
|
||||
let position_index = ctx.get_attrib_location(&program, "position") as u32;
|
||||
let sphere_cnt_loc = ctx.get_uniform_location(&program, "sphere_cnt");
|
||||
let sphere_sp_locs = get_uniform_array_locations::<SPHERE_MAX>(
|
||||
&ctx, &program, "sphere_list", Some("sp")
|
||||
);
|
||||
let sphere_lt_locs = get_uniform_array_locations::<SPHERE_MAX>(
|
||||
&ctx, &program, "sphere_list", Some("lt")
|
||||
);
|
||||
let color_locs = get_uniform_array_locations::<SPHERE_MAX>(
|
||||
&ctx, &program, "color_list", None
|
||||
);
|
||||
let resolution_loc = ctx.get_uniform_location(&program, "resolution");
|
||||
let shortdim_loc = ctx.get_uniform_location(&program, "shortdim");
|
||||
let opacity_loc = ctx.get_uniform_location(&program, "opacity");
|
||||
let highlight_loc = ctx.get_uniform_location(&program, "highlight");
|
||||
let layer_threshold_loc = ctx.get_uniform_location(&program, "layer_threshold");
|
||||
let debug_mode_loc = ctx.get_uniform_location(&program, "debug_mode");
|
||||
|
||||
// create a vertex array and bind it to the graphics context
|
||||
let vertex_array = ctx.create_vertex_array().unwrap();
|
||||
ctx.bind_vertex_array(Some(&vertex_array));
|
||||
|
||||
// set the vertex positions
|
||||
const VERTEX_CNT: usize = 6;
|
||||
let positions: [f32; 3*VERTEX_CNT] = [
|
||||
// northwest triangle
|
||||
-1.0, -1.0, 0.0,
|
||||
-1.0, 1.0, 0.0,
|
||||
1.0, 1.0, 0.0,
|
||||
// southeast triangle
|
||||
-1.0, -1.0, 0.0,
|
||||
1.0, 1.0, 0.0,
|
||||
1.0, -1.0, 0.0
|
||||
];
|
||||
bind_vertex_attrib(&ctx, position_index, 3, &positions);
|
||||
|
||||
// set up a repainting routine
|
||||
let (_, start_animation_loop, _) = create_raf(move || {
|
||||
// get the time step
|
||||
let time = performance.now();
|
||||
let time_step = 0.001*(time - last_time);
|
||||
last_time = time;
|
||||
|
||||
// get the navigation state
|
||||
let pitch_up_val = pitch_up.get();
|
||||
let pitch_down_val = pitch_down.get();
|
||||
let yaw_right_val = yaw_right.get();
|
||||
let yaw_left_val = yaw_left.get();
|
||||
let roll_ccw_val = roll_ccw.get();
|
||||
let roll_cw_val = roll_cw.get();
|
||||
let zoom_in_val = zoom_in.get();
|
||||
let zoom_out_val = zoom_out.get();
|
||||
let turntable_val = turntable.get();
|
||||
|
||||
// update the construction's orientation
|
||||
let ang_vel = {
|
||||
let pitch = pitch_up_val - pitch_down_val;
|
||||
let yaw = yaw_right_val - yaw_left_val;
|
||||
let roll = roll_ccw_val - roll_cw_val;
|
||||
let ang_vel_from_keyboard =
|
||||
if pitch != 0.0 || yaw != 0.0 || roll != 0.0 {
|
||||
ROT_SPEED * Vector3::new(-pitch, yaw, roll).normalize()
|
||||
} else {
|
||||
Vector3::zeros()
|
||||
};
|
||||
let ang_vel_from_turntable =
|
||||
if turntable_val {
|
||||
Vector3::new(0.0, TURNTABLE_SPEED, 0.0)
|
||||
} else {
|
||||
Vector3::zeros()
|
||||
};
|
||||
ang_vel_from_keyboard + ang_vel_from_turntable
|
||||
};
|
||||
let mut rotation_sp = rotation.fixed_view_mut::<3, 3>(0, 0);
|
||||
rotation_sp.copy_from(
|
||||
Rotation3::from_scaled_axis(time_step * ang_vel).matrix()
|
||||
);
|
||||
orientation = &rotation * &orientation;
|
||||
|
||||
// update the construction's location
|
||||
let zoom = zoom_out_val - zoom_in_val;
|
||||
location_z *= (time_step * ZOOM_SPEED * zoom).exp();
|
||||
|
||||
if scene_changed.get() {
|
||||
/* INSTRUMENTS */
|
||||
// measure mean frame interval
|
||||
frames_since_last_sample += 1;
|
||||
if frames_since_last_sample >= SAMPLE_PERIOD {
|
||||
mean_frame_interval.set((time - last_sample_time) / (SAMPLE_PERIOD as f64));
|
||||
last_sample_time = time;
|
||||
frames_since_last_sample = 0;
|
||||
}
|
||||
|
||||
// find the map from construction space to world space
|
||||
let location = {
|
||||
let u = -location_z;
|
||||
DMatrix::from_column_slice(5, 5, &[
|
||||
1.0, 0.0, 0.0, 0.0, 0.0,
|
||||
0.0, 1.0, 0.0, 0.0, 0.0,
|
||||
0.0, 0.0, 1.0, 0.0, u,
|
||||
0.0, 0.0, 2.0*u, 1.0, u*u,
|
||||
0.0, 0.0, 0.0, 0.0, 1.0
|
||||
])
|
||||
};
|
||||
let construction_to_world = &location * &orientation;
|
||||
|
||||
// update the construction
|
||||
sphere_vec.clear();
|
||||
color_vec.clear();
|
||||
match tab_selection.get() {
|
||||
Tab::GenTab => push_gen_construction(
|
||||
&mut sphere_vec,
|
||||
&mut color_vec,
|
||||
&construction_to_world,
|
||||
ctrl_x.get(), ctrl_y.get(),
|
||||
radius_x.get(), radius_y.get()
|
||||
),
|
||||
Tab::LowCurvTab => push_low_curv_construction(
|
||||
&mut sphere_vec,
|
||||
&mut color_vec,
|
||||
&construction_to_world,
|
||||
off1.get(), off2.get(), off3.get(),
|
||||
curv1.get(), curv2.get(), curv3.get(),
|
||||
)
|
||||
};
|
||||
|
||||
// set the resolution
|
||||
let width = canvas.width() as f32;
|
||||
let height = canvas.height() as f32;
|
||||
ctx.uniform2f(resolution_loc.as_ref(), width, height);
|
||||
ctx.uniform1f(shortdim_loc.as_ref(), width.min(height));
|
||||
|
||||
// pass the construction
|
||||
ctx.uniform1i(sphere_cnt_loc.as_ref(), sphere_vec.len() as i32);
|
||||
for n in 0..sphere_vec.len() {
|
||||
let v = &sphere_vec[n];
|
||||
ctx.uniform3f(
|
||||
sphere_sp_locs[n].as_ref(),
|
||||
v[0] as f32, v[1] as f32, v[2] as f32
|
||||
);
|
||||
ctx.uniform2f(
|
||||
sphere_lt_locs[n].as_ref(),
|
||||
v[3] as f32, v[4] as f32
|
||||
);
|
||||
ctx.uniform3fv_with_f32_array(
|
||||
color_locs[n].as_ref(),
|
||||
&color_vec[n]
|
||||
);
|
||||
}
|
||||
|
||||
// pass the control parameters
|
||||
ctx.uniform1f(opacity_loc.as_ref(), opacity.get() as f32);
|
||||
ctx.uniform1f(highlight_loc.as_ref(), highlight.get() as f32);
|
||||
ctx.uniform1i(layer_threshold_loc.as_ref(), layer_threshold.get() as i32);
|
||||
ctx.uniform1i(debug_mode_loc.as_ref(), debug_mode.get() as i32);
|
||||
|
||||
// draw the scene
|
||||
ctx.draw_arrays(WebGl2RenderingContext::TRIANGLES, 0, VERTEX_CNT as i32);
|
||||
|
||||
// clear scene change flag
|
||||
scene_changed.set(
|
||||
pitch_up_val != 0.0
|
||||
|| pitch_down_val != 0.0
|
||||
|| yaw_left_val != 0.0
|
||||
|| yaw_right_val != 0.0
|
||||
|| roll_cw_val != 0.0
|
||||
|| roll_ccw_val != 0.0
|
||||
|| zoom_in_val != 0.0
|
||||
|| zoom_out_val != 0.0
|
||||
|| turntable_val
|
||||
);
|
||||
} else {
|
||||
frames_since_last_sample = 0;
|
||||
mean_frame_interval.set(-1.0);
|
||||
}
|
||||
});
|
||||
start_animation_loop();
|
||||
});
|
||||
|
||||
let set_nav_signal = move |event: KeyboardEvent, value: f64| {
|
||||
let mut navigating = true;
|
||||
let shift = event.shift_key();
|
||||
match event.key().as_str() {
|
||||
"ArrowUp" if shift => zoom_in.set(value),
|
||||
"ArrowDown" if shift => zoom_out.set(value),
|
||||
"ArrowUp" => pitch_up.set(value),
|
||||
"ArrowDown" => pitch_down.set(value),
|
||||
"ArrowRight" if shift => roll_cw.set(value),
|
||||
"ArrowLeft" if shift => roll_ccw.set(value),
|
||||
"ArrowRight" => yaw_right.set(value),
|
||||
"ArrowLeft" => yaw_left.set(value),
|
||||
_ => navigating = false
|
||||
};
|
||||
if navigating {
|
||||
scene_changed.set(true);
|
||||
event.prevent_default();
|
||||
}
|
||||
};
|
||||
|
||||
view! {
|
||||
div(id="app") {
|
||||
div(class="tab-pane") {
|
||||
label {
|
||||
"General"
|
||||
input(
|
||||
type="radio",
|
||||
name="tab",
|
||||
prop:checked=tab_selection.get() == Tab::GenTab,
|
||||
on:click=move |_| tab_selection.set(Tab::GenTab)
|
||||
)
|
||||
}
|
||||
label {
|
||||
"Low curvature"
|
||||
input(
|
||||
type="radio",
|
||||
name="tab",
|
||||
prop:checked=tab_selection.get() == Tab::LowCurvTab,
|
||||
on:change=move |_| tab_selection.set(Tab::LowCurvTab)
|
||||
)
|
||||
}
|
||||
}
|
||||
div { "Mean frame interval: " (mean_frame_interval.get()) " ms" }
|
||||
canvas(
|
||||
ref=display,
|
||||
width=600,
|
||||
height=600,
|
||||
tabindex=0,
|
||||
on:keydown=move |event: KeyboardEvent| {
|
||||
if event.key() == "Shift" {
|
||||
roll_cw.set(yaw_right.get());
|
||||
roll_ccw.set(yaw_left.get());
|
||||
zoom_in.set(pitch_up.get());
|
||||
zoom_out.set(pitch_down.get());
|
||||
yaw_right.set(0.0);
|
||||
yaw_left.set(0.0);
|
||||
pitch_up.set(0.0);
|
||||
pitch_down.set(0.0);
|
||||
} else {
|
||||
set_nav_signal(event, 1.0);
|
||||
}
|
||||
},
|
||||
on:keyup=move |event: KeyboardEvent| {
|
||||
if event.key() == "Shift" {
|
||||
yaw_right.set(roll_cw.get());
|
||||
yaw_left.set(roll_ccw.get());
|
||||
pitch_up.set(zoom_in.get());
|
||||
pitch_down.set(zoom_out.get());
|
||||
roll_cw.set(0.0);
|
||||
roll_ccw.set(0.0);
|
||||
zoom_in.set(0.0);
|
||||
zoom_out.set(0.0);
|
||||
} else {
|
||||
set_nav_signal(event, 0.0);
|
||||
}
|
||||
},
|
||||
on:blur=move |_| {
|
||||
pitch_up.set(0.0);
|
||||
pitch_down.set(0.0);
|
||||
yaw_right.set(0.0);
|
||||
yaw_left.set(0.0);
|
||||
roll_ccw.set(0.0);
|
||||
roll_cw.set(0.0);
|
||||
}
|
||||
)
|
||||
div(ref=gen_controls) {
|
||||
label(class="control") {
|
||||
span { "Sphere 0 depth" }
|
||||
input(
|
||||
type="range",
|
||||
min=-1.0,
|
||||
max=1.0,
|
||||
step=0.001,
|
||||
bind:valueAsNumber=ctrl_x
|
||||
)
|
||||
}
|
||||
label(class="control") {
|
||||
span { "Sphere 1 depth" }
|
||||
input(
|
||||
type="range",
|
||||
min=-1.0,
|
||||
max=1.0,
|
||||
step=0.001,
|
||||
bind:valueAsNumber=ctrl_y
|
||||
)
|
||||
}
|
||||
label(class="control") {
|
||||
span { "Sphere 0 radius" }
|
||||
input(
|
||||
type="range",
|
||||
min=0.5,
|
||||
max=1.5,
|
||||
step=0.001,
|
||||
bind:valueAsNumber=radius_x
|
||||
)
|
||||
}
|
||||
label(class="control") {
|
||||
span { "Sphere 1 radius" }
|
||||
input(
|
||||
type="range",
|
||||
min=0.5,
|
||||
max=1.5,
|
||||
step=0.001,
|
||||
bind:valueAsNumber=radius_y
|
||||
)
|
||||
}
|
||||
}
|
||||
div(ref=low_curv_controls) {
|
||||
label(class="control") {
|
||||
span { "Sphere 1 offset" }
|
||||
input(
|
||||
type="range",
|
||||
min=-1.0,
|
||||
max=1.0,
|
||||
step=0.001,
|
||||
bind:valueAsNumber=off1
|
||||
)
|
||||
}
|
||||
label(class="control") {
|
||||
span { "Sphere 2 offset" }
|
||||
input(
|
||||
type="range",
|
||||
min=-1.0,
|
||||
max=1.0,
|
||||
step=0.001,
|
||||
bind:valueAsNumber=off2
|
||||
)
|
||||
}
|
||||
label(class="control") {
|
||||
span { "Sphere 3 offset" }
|
||||
input(
|
||||
type="range",
|
||||
min=-1.0,
|
||||
max=1.0,
|
||||
step=0.001,
|
||||
bind:valueAsNumber=off3
|
||||
)
|
||||
}
|
||||
label(class="control") {
|
||||
span { "Sphere 1 curvature" }
|
||||
input(
|
||||
type="range",
|
||||
min=0.0,
|
||||
max=2.0,
|
||||
step=0.001,
|
||||
bind:valueAsNumber=curv1
|
||||
)
|
||||
}
|
||||
label(class="control") {
|
||||
span { "Sphere 2 curvature" }
|
||||
input(
|
||||
type="range",
|
||||
min=0.0,
|
||||
max=2.0,
|
||||
step=0.001,
|
||||
bind:valueAsNumber=curv2
|
||||
)
|
||||
}
|
||||
label(class="control") {
|
||||
span { "Sphere 3 curvature" }
|
||||
input(
|
||||
type="range",
|
||||
min=0.0,
|
||||
max=2.0,
|
||||
step=0.001,
|
||||
bind:valueAsNumber=curv3
|
||||
)
|
||||
}
|
||||
}
|
||||
label(class="control") {
|
||||
span { "Opacity" }
|
||||
input(
|
||||
type="range",
|
||||
max=1.0,
|
||||
step=0.001,
|
||||
bind:valueAsNumber=opacity
|
||||
)
|
||||
}
|
||||
label(class="control") {
|
||||
span { "Highlight" }
|
||||
input(
|
||||
type="range",
|
||||
max=1.0,
|
||||
step=0.001,
|
||||
bind:valueAsNumber=highlight
|
||||
)
|
||||
}
|
||||
label(class="control") {
|
||||
span { "Turntable" }
|
||||
input(
|
||||
type="checkbox",
|
||||
bind:checked=turntable
|
||||
)
|
||||
}
|
||||
label(class="control") {
|
||||
span { "Layer threshold" }
|
||||
input(
|
||||
type="range",
|
||||
max=5.0,
|
||||
step=1.0,
|
||||
bind:valueAsNumber=layer_threshold
|
||||
)
|
||||
}
|
||||
label(class="control") {
|
||||
span { "Debug mode" }
|
||||
input(
|
||||
type="checkbox",
|
||||
bind:checked=debug_mode
|
||||
)
|
||||
}
|
||||
}
|
||||
}
|
||||
});
|
||||
}
|
@ -104,6 +104,10 @@ details[open]:has(li) .elt-switch::after {
|
||||
font-style: italic;
|
||||
}
|
||||
|
||||
.cst > input {
|
||||
margin: 0px 8px 0px 0px;
|
||||
}
|
||||
|
||||
/* display */
|
||||
|
||||
canvas {
|
@ -66,7 +66,8 @@ fn load_gen_assemb(assembly: &Assembly) {
|
||||
assembly.elements_by_id.with_untracked(|elts_by_id| elts_by_id["gemini_a"]),
|
||||
assembly.elements_by_id.with_untracked(|elts_by_id| elts_by_id["gemini_b"])
|
||||
),
|
||||
rep: 0.5
|
||||
rep: 0.5,
|
||||
active: create_signal(true)
|
||||
}
|
||||
);
|
||||
}
|
||||
@ -211,7 +212,8 @@ pub fn AddRemove() -> View {
|
||||
);
|
||||
state.assembly.insert_constraint(Constraint {
|
||||
args: args,
|
||||
rep: 0.0
|
||||
rep: 0.0,
|
||||
active: create_signal(true)
|
||||
});
|
||||
state.selection.update(|sel| sel.clear());
|
||||
|
@ -16,7 +16,8 @@ pub struct Element {
|
||||
#[derive(Clone)]
|
||||
pub struct Constraint {
|
||||
pub args: (usize, usize),
|
||||
pub rep: f64
|
||||
pub rep: f64,
|
||||
pub active: Signal<bool>
|
||||
}
|
||||
|
||||
// a complete, view-independent description of an assembly
|
@ -63,27 +63,13 @@ vec3 sRGB(vec3 color) {
|
||||
|
||||
// --- shading ---
|
||||
|
||||
struct taggedFrag {
|
||||
int id;
|
||||
vec4 color;
|
||||
float highlight;
|
||||
struct Fragment {
|
||||
vec3 pt;
|
||||
vec3 normal;
|
||||
vec4 color;
|
||||
};
|
||||
|
||||
taggedFrag[2] sort(taggedFrag a, taggedFrag b) {
|
||||
taggedFrag[2] result;
|
||||
if (a.pt.z > b.pt.z) {
|
||||
result[0] = a;
|
||||
result[1] = b;
|
||||
} else {
|
||||
result[0] = b;
|
||||
result[1] = a;
|
||||
}
|
||||
return result;
|
||||
}
|
||||
|
||||
taggedFrag sphere_shading(vecInv v, vec3 pt, vec3 base_color, float highlight, int id) {
|
||||
Fragment sphere_shading(vecInv v, vec3 pt, vec3 base_color) {
|
||||
// the expression for normal needs to be checked. it's supposed to give the
|
||||
// negative gradient of the lorentz product between the impact point vector
|
||||
// and the sphere vector with respect to the coordinates of the impact
|
||||
@ -93,11 +79,26 @@ taggedFrag sphere_shading(vecInv v, vec3 pt, vec3 base_color, float highlight, i
|
||||
|
||||
float incidence = dot(normal, light_dir);
|
||||
float illum = mix(0.4, 1.0, max(incidence, 0.0));
|
||||
return taggedFrag(id, vec4(illum * base_color, opacity), highlight, pt, normal);
|
||||
return Fragment(pt, normal, vec4(illum * base_color, opacity));
|
||||
}
|
||||
|
||||
float intersection_dist(Fragment a, Fragment b) {
|
||||
float intersection_sin = length(cross(a.normal, b.normal));
|
||||
vec3 disp = a.pt - b.pt;
|
||||
return max(
|
||||
abs(dot(a.normal, disp)),
|
||||
abs(dot(b.normal, disp))
|
||||
) / intersection_sin;
|
||||
}
|
||||
|
||||
// --- ray-casting ---
|
||||
|
||||
struct TaggedDepth {
|
||||
float depth;
|
||||
float dimming;
|
||||
int id;
|
||||
};
|
||||
|
||||
// if `a/b` is less than this threshold, we approximate `a*u^2 + b*u + c` by
|
||||
// the linear function `b*u + c`
|
||||
const float DEG_THRESHOLD = 1e-9;
|
||||
@ -139,36 +140,29 @@ void main() {
|
||||
|
||||
// cast rays through the spheres
|
||||
const int LAYER_MAX = 12;
|
||||
taggedFrag frags [LAYER_MAX];
|
||||
TaggedDepth top_hits [LAYER_MAX];
|
||||
int layer_cnt = 0;
|
||||
for (int id = 0; id < sphere_cnt; ++id) {
|
||||
// find out where the ray hits the sphere
|
||||
vec2 hit_depths = sphere_cast(sphere_list[id], dir);
|
||||
|
||||
// insertion-sort the fragments we hit into the fragment list
|
||||
// insertion-sort the points we hit into the hit list
|
||||
float dimming = 1.;
|
||||
for (int side = 0; side < 2; ++side) {
|
||||
float hit_z = -hit_depths[side];
|
||||
if (0. > hit_z) {
|
||||
float depth = hit_depths[side];
|
||||
if (depth > 0.) {
|
||||
for (int layer = layer_cnt; layer >= 0; --layer) {
|
||||
if (layer < 1 || frags[layer-1].pt.z >= hit_z) {
|
||||
// we're not as close to the screen as the fragment
|
||||
// before the empty slot, so insert here
|
||||
if (layer < 1 || top_hits[layer-1].depth <= depth) {
|
||||
// we're not as close to the screen as the hit before
|
||||
// the empty slot, so insert here
|
||||
if (layer < LAYER_MAX) {
|
||||
frags[layer] = sphere_shading(
|
||||
sphere_list[id],
|
||||
hit_depths[side] * dir,
|
||||
dimming * color_list[id],
|
||||
highlight_list[id],
|
||||
id
|
||||
);
|
||||
top_hits[layer] = TaggedDepth(depth, dimming, id);
|
||||
}
|
||||
break;
|
||||
} else {
|
||||
// we're closer to the screen than the fragment before
|
||||
// the empty slot, so move that fragment into the empty
|
||||
// slot
|
||||
frags[layer] = frags[layer-1];
|
||||
// we're closer to the screen than the hit before the
|
||||
// empty slot, so move that hit into the empty slot
|
||||
top_hits[layer] = top_hits[layer-1];
|
||||
}
|
||||
}
|
||||
layer_cnt = min(layer_cnt + 1, LAYER_MAX);
|
||||
@ -194,37 +188,47 @@ void main() {
|
||||
return;
|
||||
}
|
||||
|
||||
// highlight intersections and cusps
|
||||
for (int i = layer_cnt-1; i >= 1; --i) {
|
||||
// intersections
|
||||
taggedFrag frag0 = frags[i];
|
||||
taggedFrag frag1 = frags[i-1];
|
||||
float ixn_sin = length(cross(frag0.normal, frag1.normal));
|
||||
vec3 disp = frag0.pt - frag1.pt;
|
||||
float ixn_dist = max(
|
||||
abs(dot(frag1.normal, disp)),
|
||||
abs(dot(frag0.normal, disp))
|
||||
) / ixn_sin;
|
||||
float max_highlight = max(frags[i].highlight, frags[i-1].highlight);
|
||||
float ixn_highlight = 0.5 * max_highlight * (1. - smoothstep(2./3.*ixn_threshold, 1.5*ixn_threshold, ixn_dist));
|
||||
frags[i].color = mix(frags[i].color, vec4(1.), ixn_highlight);
|
||||
frags[i-1].color = mix(frags[i-1].color, vec4(1.), ixn_highlight);
|
||||
|
||||
// cusps
|
||||
float cusp_cos = abs(dot(dir, frag0.normal));
|
||||
float cusp_threshold = 2.*sqrt(ixn_threshold * sphere_list[frag0.id].lt.s);
|
||||
float highlight = frags[i].highlight;
|
||||
float cusp_highlight = highlight * (1. - smoothstep(2./3.*cusp_threshold, 1.5*cusp_threshold, cusp_cos));
|
||||
frags[i].color = mix(frags[i].color, vec4(1.), cusp_highlight);
|
||||
}
|
||||
|
||||
// composite the sphere fragments
|
||||
vec3 color = vec3(0.);
|
||||
for (int i = layer_cnt-1; i >= layer_threshold; --i) {
|
||||
if (frags[i].pt.z < 0.) {
|
||||
vec4 frag_color = frags[i].color;
|
||||
color = mix(color, frag_color.rgb, frag_color.a);
|
||||
}
|
||||
int layer = layer_cnt - 1;
|
||||
TaggedDepth hit = top_hits[layer];
|
||||
Fragment frag_next = sphere_shading(
|
||||
sphere_list[hit.id],
|
||||
hit.depth * dir,
|
||||
hit.dimming * color_list[hit.id]
|
||||
);
|
||||
float highlight_next = highlight_list[hit.id];
|
||||
--layer;
|
||||
for (; layer >= layer_threshold; --layer) {
|
||||
// load the current fragment
|
||||
Fragment frag = frag_next;
|
||||
float highlight = highlight_next;
|
||||
|
||||
// shade the next fragment
|
||||
hit = top_hits[layer];
|
||||
frag_next = sphere_shading(
|
||||
sphere_list[hit.id],
|
||||
hit.depth * dir,
|
||||
hit.dimming * color_list[hit.id]
|
||||
);
|
||||
highlight_next = highlight_list[hit.id];
|
||||
|
||||
// highlight intersections
|
||||
float ixn_dist = intersection_dist(frag, frag_next);
|
||||
float max_highlight = max(highlight, highlight_next);
|
||||
float ixn_highlight = 0.5 * max_highlight * (1. - smoothstep(2./3.*ixn_threshold, 1.5*ixn_threshold, ixn_dist));
|
||||
frag.color = mix(frag.color, vec4(1.), ixn_highlight);
|
||||
frag_next.color = mix(frag_next.color, vec4(1.), ixn_highlight);
|
||||
|
||||
// highlight cusps
|
||||
float cusp_cos = abs(dot(dir, frag.normal));
|
||||
float cusp_threshold = 2.*sqrt(ixn_threshold * sphere_list[hit.id].lt.s);
|
||||
float cusp_highlight = highlight * (1. - smoothstep(2./3.*cusp_threshold, 1.5*cusp_threshold, cusp_cos));
|
||||
frag.color = mix(frag.color, vec4(1.), cusp_highlight);
|
||||
|
||||
// composite the current fragment
|
||||
color = mix(color, frag.color.rgb, frag.color.a);
|
||||
}
|
||||
color = mix(color, frag_next.color.rgb, frag_next.color.a);
|
||||
outColor = vec4(sRGB(color), 1.);
|
||||
}
|
@ -136,6 +136,7 @@ pub fn Outline() -> View {
|
||||
let other_arg_label = assembly.elements.with(|elts| elts[other_arg].label.clone());
|
||||
view! {
|
||||
li(class="cst") {
|
||||
input(r#type="checkbox", bind:checked=cst.active)
|
||||
div(class="cst-label") { (other_arg_label) }
|
||||
div(class="cst-rep") { (cst.rep) }
|
||||
}
|
Loading…
Reference in New Issue
Block a user