Compare commits
7 Commits
144bfb8faf
...
8cb73f88d0
Author | SHA1 | Date | |
---|---|---|---|
|
8cb73f88d0 | ||
|
eeb0f00534 | ||
|
8ce3e251d7 | ||
|
543f348cd8 | ||
|
0abcb995b5 | ||
|
d864ab5abe | ||
|
fb51e00503 |
3
lang-trials/rust-benchmark-native/.gitignore
vendored
Normal file
3
lang-trials/rust-benchmark-native/.gitignore
vendored
Normal file
@ -0,0 +1,3 @@
|
||||
target/*
|
||||
dist/*
|
||||
Cargo.lock
|
16
lang-trials/rust-benchmark-native/Cargo.toml
Normal file
16
lang-trials/rust-benchmark-native/Cargo.toml
Normal file
@ -0,0 +1,16 @@
|
||||
[package]
|
||||
name = "rust-benchmark-native"
|
||||
version = "0.1.0"
|
||||
authors = ["Aaron"]
|
||||
edition = "2021"
|
||||
|
||||
[dependencies]
|
||||
cairo-rs = "0.20.1"
|
||||
gtk = { package = "gtk4", version = "0.9.0" }
|
||||
nalgebra = "0.33.0"
|
||||
plotters = "0.3.6"
|
||||
plotters-cairo = "0.7.0"
|
||||
|
||||
[profile.release]
|
||||
opt-level = "s" # optimize for small code size
|
||||
debug = true # include debug symbols
|
105
lang-trials/rust-benchmark-native/src/engine.rs
Normal file
105
lang-trials/rust-benchmark-native/src/engine.rs
Normal file
@ -0,0 +1,105 @@
|
||||
use nalgebra::{*, allocator::Allocator};
|
||||
use std::f64::consts::{PI, E};
|
||||
|
||||
/* dynamic matrices */
|
||||
pub fn rand_eigval_series(dim: usize, time_res: usize) -> Vec<OVector<Complex<f64>, Dyn>> {
|
||||
// initialize the random matrix
|
||||
let mut rand_mat = DMatrix::<f64>::from_fn(dim, dim, |j, k| {
|
||||
let n = j*dim + k;
|
||||
E*((n*n) as f64) % 2.0 - 1.0
|
||||
}) * (3.0 / (dim as f64)).sqrt();
|
||||
|
||||
// initialize the rotation step
|
||||
let mut rot_step = DMatrix::<f64>::identity(dim, dim);
|
||||
let max_freq = 4;
|
||||
for n in (0..dim).step_by(2) {
|
||||
let ang = PI * ((n % max_freq) as f64) / (time_res as f64);
|
||||
let ang_cos = ang.cos();
|
||||
let ang_sin = ang.sin();
|
||||
rot_step[(n, n)] = ang_cos;
|
||||
rot_step[(n+1, n)] = ang_sin;
|
||||
rot_step[(n, n+1)] = -ang_sin;
|
||||
rot_step[(n+1, n+1)] = ang_cos;
|
||||
}
|
||||
|
||||
// find the eigenvalues
|
||||
let mut eigval_series = Vec::<OVector<Complex<f64>, Dyn>>::with_capacity(time_res);
|
||||
eigval_series.push(rand_mat.complex_eigenvalues());
|
||||
for _ in 1..time_res {
|
||||
rand_mat = &rot_step * rand_mat;
|
||||
eigval_series.push(rand_mat.complex_eigenvalues());
|
||||
}
|
||||
eigval_series
|
||||
}
|
||||
|
||||
/* dynamic single float matrices */
|
||||
/*pub fn rand_eigval_series(dim: usize, time_res: usize) -> Vec<OVector<Complex<f32>, Dyn>> {
|
||||
// initialize the random matrix
|
||||
let mut rand_mat = DMatrix::<f32>::from_fn(dim, dim, |j, k| {
|
||||
let n = j*dim + k;
|
||||
(E as f32)*((n*n) as f32) % 2.0_f32 - 1.0_f32
|
||||
}) * (3.0_f32 / (dim as f32)).sqrt();
|
||||
|
||||
// initialize the rotation step
|
||||
let mut rot_step = DMatrix::<f32>::identity(dim, dim);
|
||||
let max_freq = 4;
|
||||
for n in (0..dim).step_by(2) {
|
||||
let ang = (PI as f32) * ((n % max_freq) as f32) / (time_res as f32);
|
||||
let ang_cos = ang.cos();
|
||||
let ang_sin = ang.sin();
|
||||
rot_step[(n, n)] = ang_cos;
|
||||
rot_step[(n+1, n)] = ang_sin;
|
||||
rot_step[(n, n+1)] = -ang_sin;
|
||||
rot_step[(n+1, n+1)] = ang_cos;
|
||||
}
|
||||
|
||||
// find the eigenvalues
|
||||
let mut eigval_series = Vec::<OVector<Complex<f32>, Dyn>>::with_capacity(time_res);
|
||||
eigval_series.push(rand_mat.complex_eigenvalues());
|
||||
for _ in 1..time_res {
|
||||
rand_mat = &rot_step * rand_mat;
|
||||
eigval_series.push(rand_mat.complex_eigenvalues());
|
||||
}
|
||||
eigval_series
|
||||
}*/
|
||||
|
||||
/* static matrices. should only be used when the dimension is really small */
|
||||
/*pub fn rand_eigval_series<N>(time_res: usize) -> Vec<OVector<Complex<f64>, N>>
|
||||
where
|
||||
N: ToTypenum + DimName + DimSub<U1>,
|
||||
DefaultAllocator:
|
||||
Allocator<N> +
|
||||
Allocator<N, N> +
|
||||
Allocator<<N as DimSub<U1>>::Output> +
|
||||
Allocator<N, <N as DimSub<U1>>::Output>
|
||||
{
|
||||
// initialize the random matrix
|
||||
let dim = N::try_to_usize().unwrap();
|
||||
let mut rand_mat = OMatrix::<f64, N, N>::from_fn(|j, k| {
|
||||
let n = j*dim + k;
|
||||
E*((n*n) as f64) % 2.0 - 1.0
|
||||
}) * (3.0 / (dim as f64)).sqrt();
|
||||
/*let mut rand_mat = OMatrix::<f64, N, N>::identity();*/
|
||||
|
||||
// initialize the rotation step
|
||||
let mut rot_step = OMatrix::<f64, N, N>::identity();
|
||||
let max_freq = 4;
|
||||
for n in (0..dim).step_by(2) {
|
||||
let ang = PI * ((n % max_freq) as f64) / (time_res as f64);
|
||||
let ang_cos = ang.cos();
|
||||
let ang_sin = ang.sin();
|
||||
rot_step[(n, n)] = ang_cos;
|
||||
rot_step[(n+1, n)] = ang_sin;
|
||||
rot_step[(n, n+1)] = -ang_sin;
|
||||
rot_step[(n+1, n+1)] = ang_cos;
|
||||
}
|
||||
|
||||
// find the eigenvalues
|
||||
let mut eigval_series = Vec::<OVector<Complex<f64>, N>>::with_capacity(time_res);
|
||||
eigval_series.push(rand_mat.complex_eigenvalues());
|
||||
for _ in 1..time_res {
|
||||
rand_mat = &rot_step * rand_mat;
|
||||
eigval_series.push(rand_mat.complex_eigenvalues());
|
||||
}
|
||||
eigval_series
|
||||
}*/
|
104
lang-trials/rust-benchmark-native/src/main.rs
Normal file
104
lang-trials/rust-benchmark-native/src/main.rs
Normal file
@ -0,0 +1,104 @@
|
||||
// based on Olivier Pelhatre's GTK 3 example, ported to GTK 4
|
||||
//
|
||||
// https://github.com/Ouam74/RUST_Real-time_plots_using_GTK-rs_and_Plotters-rs
|
||||
//
|
||||
// a self-contained component might draw on the example below, by StackOverflow
|
||||
// user Nicolas
|
||||
//
|
||||
// https://stackoverflow.com/a/76548487
|
||||
//
|
||||
// here's a crash course in `plotters`
|
||||
//
|
||||
// https://plotters-rs.github.io/book/basic/basic_data_plotting.html
|
||||
//
|
||||
|
||||
extern crate cairo;
|
||||
use plotters::prelude::*;
|
||||
use plotters_cairo::CairoBackend;
|
||||
use gtk::{
|
||||
glib,
|
||||
prelude::*,
|
||||
Adjustment,
|
||||
Align,
|
||||
Application,
|
||||
ApplicationWindow,
|
||||
Box,
|
||||
DrawingArea,
|
||||
Label,
|
||||
Orientation,
|
||||
Scale
|
||||
};
|
||||
use std::time::Instant;
|
||||
|
||||
mod engine;
|
||||
|
||||
fn main() -> glib::ExitCode {
|
||||
let app = Application::builder()
|
||||
.application_id("org.studioinfinity.rust-benchmark-native")
|
||||
.build();
|
||||
|
||||
app.connect_activate(|app| {
|
||||
const TIME_RES: usize = 100;
|
||||
let start_time = Instant::now();
|
||||
let eigval_series = engine::rand_eigval_series(60, TIME_RES);
|
||||
let run_time = start_time.elapsed().as_millis();
|
||||
|
||||
// application state
|
||||
let time_step = Adjustment::new(0.0, 0.0, TIME_RES as f64, 1.0, 0.0, 0.0);
|
||||
|
||||
// create the window.
|
||||
let window = ApplicationWindow::builder()
|
||||
.application(app)
|
||||
.title("The circular law")
|
||||
.build();
|
||||
|
||||
// create a vertical box
|
||||
let container = Box::new(Orientation::Vertical, 5);
|
||||
window.set_child(Some(&container));
|
||||
|
||||
// create the run time readout
|
||||
let run_time_readout = Label::builder()
|
||||
.margin_top(5)
|
||||
.margin_start(10)
|
||||
.halign(Align::Start)
|
||||
.label(glib::gformat!("{} ms", run_time))
|
||||
.build();
|
||||
container.append(&run_time_readout);
|
||||
|
||||
// set up the drawing area
|
||||
let drawing_area = DrawingArea::builder()
|
||||
.content_width(600)
|
||||
.content_height(600)
|
||||
.build();
|
||||
let time_step_for_draw = time_step.clone();
|
||||
let draw_eigvals = move |_: &DrawingArea, context: &cairo::Context, width: i32, height: i32| {
|
||||
let root = CairoBackend::new(&context, (width as u32, height as u32)).unwrap().into_drawing_area();
|
||||
let _ = root.fill(&BLACK);
|
||||
|
||||
const R_DISP: f64 = 1.5;
|
||||
let mut chart = ChartBuilder::on(&root)
|
||||
.build_cartesian_2d(-R_DISP..R_DISP, -R_DISP..R_DISP)
|
||||
.unwrap();
|
||||
let time_step_val = (time_step_for_draw.value() as usize).min(TIME_RES-1);
|
||||
let eigval_iter = eigval_series[time_step_val].iter();
|
||||
let _ = chart.draw_series(
|
||||
eigval_iter.map(|z| Circle::new((z.re, z.im), 3, WHITE.filled()))
|
||||
);
|
||||
let _ = root.present();
|
||||
};
|
||||
DrawingAreaExtManual::set_draw_func(&drawing_area, draw_eigvals);
|
||||
container.append(&drawing_area);
|
||||
|
||||
// set up the time step slider
|
||||
let time_step_scale = Scale::new(Orientation::Horizontal, Some(&time_step));
|
||||
time_step_scale.connect_value_changed(move |_: &Scale| {
|
||||
drawing_area.queue_draw();
|
||||
});
|
||||
container.append(&time_step_scale);
|
||||
|
||||
// show the window
|
||||
window.present();
|
||||
});
|
||||
|
||||
app.run()
|
||||
}
|
@ -1,5 +1,5 @@
|
||||
[package]
|
||||
name = "sycamore-trial"
|
||||
name = "rust-benchmark"
|
||||
version = "0.1.0"
|
||||
authors = ["Aaron"]
|
||||
edition = "2021"
|
||||
@ -10,7 +10,6 @@ default = ["console_error_panic_hook"]
|
||||
[dependencies]
|
||||
nalgebra = "0.33.0"
|
||||
sycamore = "0.9.0-beta.2"
|
||||
typenum = "1.17.0"
|
||||
|
||||
# The `console_error_panic_hook` crate provides better debugging of panics by
|
||||
# logging them with `console.error`. This is great for development, but requires
|
||||
|
@ -1,20 +1,9 @@
|
||||
use nalgebra::{*, allocator::Allocator};
|
||||
use std::f64::consts::{PI, E};
|
||||
/*use std::ops::Sub;*/
|
||||
/*use typenum::{B1, UInt, UTerm};*/
|
||||
|
||||
/* dynamic matrices */
|
||||
pub fn rand_eigval_series<N>(time_res: usize) -> Vec<OVector<Complex<f64>, Dyn>>
|
||||
where
|
||||
N: ToTypenum + DimName + DimSub<U1>,
|
||||
DefaultAllocator:
|
||||
Allocator<N> +
|
||||
Allocator<N, N> +
|
||||
Allocator<<N as DimSub<U1>>::Output> +
|
||||
Allocator<N, <N as DimSub<U1>>::Output>
|
||||
{
|
||||
pub fn rand_eigval_series(dim: usize, time_res: usize) -> Vec<OVector<Complex<f64>, Dyn>> {
|
||||
// initialize the random matrix
|
||||
let dim = N::try_to_usize().unwrap();
|
||||
let mut rand_mat = DMatrix::<f64>::from_fn(dim, dim, |j, k| {
|
||||
let n = j*dim + k;
|
||||
E*((n*n) as f64) % 2.0 - 1.0
|
||||
@ -44,17 +33,8 @@ pub fn rand_eigval_series<N>(time_res: usize) -> Vec<OVector<Complex<f64>, Dyn>>
|
||||
}
|
||||
|
||||
/* dynamic single float matrices */
|
||||
/*pub fn rand_eigval_series<N>(time_res: usize) -> Vec<OVector<Complex<f32>, Dyn>>
|
||||
where
|
||||
N: ToTypenum + DimName + DimSub<U1>,
|
||||
DefaultAllocator:
|
||||
Allocator<N> +
|
||||
Allocator<N, N> +
|
||||
Allocator<<N as DimSub<U1>>::Output> +
|
||||
Allocator<N, <N as DimSub<U1>>::Output>
|
||||
{
|
||||
/*pub fn rand_eigval_series(dim: usize, time_res: usize) -> Vec<OVector<Complex<f32>, Dyn>> {
|
||||
// initialize the random matrix
|
||||
let dim = N::try_to_usize().unwrap();
|
||||
let mut rand_mat = DMatrix::<f32>::from_fn(dim, dim, |j, k| {
|
||||
let n = j*dim + k;
|
||||
(E as f32)*((n*n) as f32) % 2.0_f32 - 1.0_f32
|
||||
@ -99,7 +79,6 @@ pub fn rand_eigval_series<N>(time_res: usize) -> Vec<OVector<Complex<f64>, Dyn>>
|
||||
let n = j*dim + k;
|
||||
E*((n*n) as f64) % 2.0 - 1.0
|
||||
}) * (3.0 / (dim as f64)).sqrt();
|
||||
/*let mut rand_mat = OMatrix::<f64, N, N>::identity();*/
|
||||
|
||||
// initialize the rotation step
|
||||
let mut rot_step = OMatrix::<f64, N, N>::identity();
|
||||
@ -123,42 +102,3 @@ pub fn rand_eigval_series<N>(time_res: usize) -> Vec<OVector<Complex<f64>, Dyn>>
|
||||
}
|
||||
eigval_series
|
||||
}*/
|
||||
|
||||
/* another attempt at static matrices. i couldn't get the types to work out */
|
||||
/*pub fn random_eigval_series<const N: usize>(time_res: usize) -> Vec<OVector<Complex<f64>, Const<N>>>
|
||||
where
|
||||
Const<N>: ToTypenum,
|
||||
<Const<N> as ToTypenum>::Typenum: Sub<UInt<UTerm, B1>>,
|
||||
<<Const<N> as ToTypenum>::Typenum as Sub<UInt<UTerm, B1>>>::Output: ToConst
|
||||
{
|
||||
// initialize the random matrix
|
||||
/*let mut rand_mat = SMatrix::<f64, N, N>::zeros();
|
||||
for n in 0..N*N {
|
||||
rand_mat[n] = E*((n*n) as f64) % 2.0 - 1.0;
|
||||
}*/
|
||||
let rand_mat = OMatrix::<f64, Const<N>, Const<N>>::from_fn(|j, k| {
|
||||
let n = j*N + k;
|
||||
E*((n*n) as f64) % 2.0 - 1.0
|
||||
});
|
||||
|
||||
// initialize the rotation step
|
||||
let mut rot_step = OMatrix::<f64, Const<N>, Const<N>>::identity();
|
||||
let max_freq = 4;
|
||||
for n in (0..N).step_by(2) {
|
||||
let ang = PI * ((n % max_freq) as f64) / (time_res as f64);
|
||||
let ang_cos = ang.cos();
|
||||
let ang_sin = ang.sin();
|
||||
rot_step[(n, n)] = ang_cos;
|
||||
rot_step[(n+1, n)] = ang_sin;
|
||||
rot_step[(n, n+1)] = -ang_sin;
|
||||
rot_step[(n+1, n+1)] = ang_cos;
|
||||
}
|
||||
|
||||
// find the eigenvalues
|
||||
let mut eigvals = Vec::<OVector<Complex<f64>, Const<N>>>::with_capacity(time_res);
|
||||
unsafe { eigvals.set_len(time_res); }
|
||||
for t in 0..time_res {
|
||||
eigvals[t] = rand_mat.complex_eigenvalues();
|
||||
}
|
||||
eigvals
|
||||
}*/
|
@ -1,4 +1,3 @@
|
||||
use nalgebra::*;
|
||||
use std::f64::consts::PI as PI;
|
||||
use sycamore::{prelude::*, rt::{JsCast, JsValue}};
|
||||
use web_sys::window;
|
||||
@ -19,7 +18,8 @@ fn main() {
|
||||
on_mount(move || {
|
||||
let performance = window().unwrap().performance().unwrap();
|
||||
let start_time = performance.now();
|
||||
let eigval_series = engine::rand_eigval_series::<U60>(time_res);
|
||||
/*let eigval_series = engine::rand_eigval_series::<U60>(time_res);*/
|
||||
let eigval_series = engine::rand_eigval_series(60, time_res);
|
||||
let run_time = performance.now() - start_time;
|
||||
run_time_report.set(run_time);
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user