Do gradient descent entirely in BigFloat
The previos version accidentally returned steps in Float64.
This commit is contained in:
parent
242d630cc6
commit
e7dde5800c
@ -11,7 +11,7 @@ using PolynomialRoots
|
||||
# subspace of matrices whose entries vanish at each empty index of `target`
|
||||
function proj_diff(target, attempt)
|
||||
J, K, values = findnz(target)
|
||||
result = zeros(size(target)...)
|
||||
result = zeros(BigFloat, size(target)...)
|
||||
for (j, k, val) in zip(J, K, values)
|
||||
result[j, k] = val - attempt[j, k]
|
||||
end
|
||||
@ -65,7 +65,7 @@ guess = sqrt(0.5) * BigFloat[
|
||||
steps = 600
|
||||
line_search_max_steps = 100
|
||||
init_stepsize = BigFloat(1)
|
||||
step_shrink_factor = BigFloat(0.5)
|
||||
step_shrink_factor = BigFloat(0.9)
|
||||
target_improvement_factor = BigFloat(0.5)
|
||||
|
||||
# complete the gram matrix using gradient descent
|
||||
|
Loading…
Reference in New Issue
Block a user