doc: Weird unicode minus
This commit is contained in:
parent
ce62a94ddb
commit
d3e5a0bc37
@ -7,7 +7,7 @@ These coordinates are of form $I=(c, b, x, y, z)$ where we think of $c$ as the c
|
||||
| Entity or Relationship | Representation | Comments/questions |
|
||||
| ---------------------------------------------------------------------------------- | ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ | -------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
|
||||
| Sphere $s$ with radius $r>0$ centered on $P = (x,y,z)$ | $I_s = (\frac1{c}, \frac1{r}, \frac{x}{r}, \frac{y}{r}, \frac{z}{r})$ satisfying $Q(I_s,I_s) = -1$, i.e., $c = r/(\|P\|^2 - r^2)$. | Note that $1/c = \|P\|^2/r - r$, so there is no trouble if $\|P\| = r$; we just get first coordinate to be 0. Using the point representation $I_P$ from below, let's orient the sphere so that its normals point into the "positive side," where $Q(I_P, I_s) > 0$. The vector $I_s$ then represents a sphere with outward normals, while $-I_s$ represents one with inward normals. |
|
||||
| Plane $p$ with unit normal $(x,y,z)$ through the (Euclidean) point $(sx,sy,sz)$ | $I_p = (-2s, 0, -x, -y, -z)$ | Note that $Q(I_p, I_p)$ is still $−1$. We orient planes using the same convention we use for spheres. For example, $(-2, 0, -1/\sqrt3, -1/\sqrt3, -1/\sqrt3)$ and $(2, 0, 1/\sqrt3, 1/\sqrt3, 1/\sqrt3)$ represent planes that coincide in space, which have their normals pointing away from and toward the origin, respectively. Note that the ray from $(sx, sy, sz) \in p$ in direction $(-x, -y, -z)$ is the ray perpendicular to the plane through the origin; since $(-x, -y, -z)$ is a unit vector, $(sx, sy, sz)$ and hence $p$ is at distance $s$ from the origin. These coordinates are essentially the limit of a sphere's coordinates as its radius goes to infinity, or equivalently, as its bend goes to 0. |
|
||||
| Plane $p$ with unit normal $(x,y,z)$ through the (Euclidean) point $(sx,sy,sz)$ | $I_p = (-2s, 0, -x, -y, -z)$ | Note that $Q(I_p, I_p)$ is still $-1$. We orient planes using the same convention we use for spheres. For example, $(-2, 0, -1/\sqrt3, -1/\sqrt3, -1/\sqrt3)$ and $(2, 0, 1/\sqrt3, 1/\sqrt3, 1/\sqrt3)$ represent planes that coincide in space, which have their normals pointing away from and toward the origin, respectively. Note that the ray from $(sx, sy, sz) \in p$ in direction $(-x, -y, -z)$ is the ray perpendicular to the plane through the origin; since $(-x, -y, -z)$ is a unit vector, $(sx, sy, sz)$ and hence $p$ is at distance $s$ from the origin. These coordinates are essentially the limit of a sphere's coordinates as its radius goes to infinity, or equivalently, as its bend goes to 0. |
|
||||
| Point $P$ with Euclidean coordinates $(x,y,z)$ | $I_P = (\|P\|^2, 1, x, y, z)$ | Note $Q(I_P,I_P) = 0$. This gives us the freedom to choose a different normalization. For example, we could scale the representation shown here by $(\|P\|^2+1)^{-1}$, putting it on the sphere where the light cone intersects the plane where the first two coordinates sum to $1$. |
|
||||
| ∞, the "point at infinity" | $I_\infty = (1,0,0,0,0)$ | The only solution to $Q(I,I) = 0$ not covered by (some normalization of) the above case. |
|
||||
| Point $P$ lies on sphere or plane given by $I$ | $Q(I_P, I) = 0$ | Actually also works if $I$ is the coordinates of a point, in which case "lies on" simply means "coincides with". |
|
||||
|
Loading…
Reference in New Issue
Block a user