Add Irisawa hexlet example
Hat tip Romy, who sent me the article on sangaku that led me to this problem.
This commit is contained in:
parent
19a4d49497
commit
a26f1e3927
77
engine-proto/gram-test/irisawa-hexlet.jl
Normal file
77
engine-proto/gram-test/irisawa-hexlet.jl
Normal file
@ -0,0 +1,77 @@
|
|||||||
|
include("Engine.jl")
|
||||||
|
|
||||||
|
using SparseArrays
|
||||||
|
|
||||||
|
# this problem is from a sangaku by Irisawa Shintarō Hiroatsu. the article below
|
||||||
|
# includes a nice translation of the problem statement, which was recorded in
|
||||||
|
# Uchida Itsumi's book _Kokon sankan_ (_Mathematics, Past and Present_)
|
||||||
|
#
|
||||||
|
# "Japan's 'Wasan' Mathematical Tradition", by Abe Haruki
|
||||||
|
# https://www.nippon.com/en/japan-topics/c12801/
|
||||||
|
#
|
||||||
|
|
||||||
|
# initialize the partial gram matrix
|
||||||
|
J = Int64[]
|
||||||
|
K = Int64[]
|
||||||
|
values = BigFloat[]
|
||||||
|
for s in 1:9
|
||||||
|
# each sphere is represented by a spacelike vector
|
||||||
|
push!(J, s)
|
||||||
|
push!(K, s)
|
||||||
|
push!(values, 1)
|
||||||
|
|
||||||
|
# the circumscribing sphere is internally tangent to all of the other spheres
|
||||||
|
if s > 1
|
||||||
|
append!(J, [1, s])
|
||||||
|
append!(K, [s, 1])
|
||||||
|
append!(values, [1, 1])
|
||||||
|
end
|
||||||
|
|
||||||
|
if s > 3
|
||||||
|
# each chain sphere is externally tangent to the two nucleus spheres
|
||||||
|
for n in 2:3
|
||||||
|
append!(J, [s, n])
|
||||||
|
append!(K, [n, s])
|
||||||
|
append!(values, [-1, -1])
|
||||||
|
end
|
||||||
|
|
||||||
|
# each chain sphere is externally tangent to the next sphere in the chain
|
||||||
|
s_next = 4 + mod(s-3, 6)
|
||||||
|
append!(J, [s, s_next])
|
||||||
|
append!(K, [s_next, s])
|
||||||
|
append!(values, [-1, -1])
|
||||||
|
end
|
||||||
|
end
|
||||||
|
gram = sparse(J, K, values)
|
||||||
|
|
||||||
|
# make an initial guess
|
||||||
|
guess = hcat(
|
||||||
|
Engine.sphere(BigFloat[0, 0, 0], BigFloat(15)),
|
||||||
|
Engine.sphere(BigFloat[0, 0, -9], BigFloat(5)),
|
||||||
|
Engine.sphere(BigFloat[0, 0, 11], BigFloat(3)),
|
||||||
|
(
|
||||||
|
Engine.sphere(9*BigFloat[cos(k*π/3), sin(k*π/3), 0], BigFloat(2.5))
|
||||||
|
for k in 1:6
|
||||||
|
)...
|
||||||
|
)
|
||||||
|
frozen = [CartesianIndex(4, k) for k in 1:4]
|
||||||
|
|
||||||
|
# complete the gram matrix using Newton's method with backtracking
|
||||||
|
L, success, history = Engine.realize_gram(gram, guess, frozen)
|
||||||
|
completed_gram = L'*Engine.Q*L
|
||||||
|
println("Completed Gram matrix:\n")
|
||||||
|
display(completed_gram)
|
||||||
|
if success
|
||||||
|
println("\nTarget accuracy achieved!")
|
||||||
|
else
|
||||||
|
println("\nFailed to reach target accuracy")
|
||||||
|
end
|
||||||
|
println("Steps: ", size(history.scaled_loss, 1))
|
||||||
|
println("Loss: ", history.scaled_loss[end], "\n")
|
||||||
|
if success
|
||||||
|
println("Chain diameters:")
|
||||||
|
println(" ", 1 / L[4,4], " sun (given)")
|
||||||
|
for k in 5:9
|
||||||
|
println(" ", 1 / L[4,k], " sun")
|
||||||
|
end
|
||||||
|
end
|
105
engine-proto/gram-test/irisawa-hexlet_bad.jl
Normal file
105
engine-proto/gram-test/irisawa-hexlet_bad.jl
Normal file
@ -0,0 +1,105 @@
|
|||||||
|
include("Engine.jl")
|
||||||
|
|
||||||
|
using SparseArrays
|
||||||
|
|
||||||
|
# --- construct the nucleus spheres ---
|
||||||
|
|
||||||
|
println("--- Nucleus spheres ---\n")
|
||||||
|
|
||||||
|
# initialize the partial gram matrix for the circumscribing and nucleus spheres
|
||||||
|
J = Int64[]
|
||||||
|
K = Int64[]
|
||||||
|
values = BigFloat[]
|
||||||
|
for n in 1:3
|
||||||
|
push!(J, n)
|
||||||
|
push!(K, n)
|
||||||
|
push!(values, 1)
|
||||||
|
if n > 1
|
||||||
|
append!(J, [1, n])
|
||||||
|
append!(K, [n, 1])
|
||||||
|
append!(values, [1, 1])
|
||||||
|
end
|
||||||
|
end
|
||||||
|
gram_nuc = sparse(J, K, values)
|
||||||
|
|
||||||
|
# make an initial guess
|
||||||
|
guess_nuc = hcat(
|
||||||
|
Engine.sphere(BigFloat[0, 0, 0], BigFloat(15)),
|
||||||
|
Engine.sphere(BigFloat[0, 0, -10], BigFloat(5)),
|
||||||
|
Engine.sphere(BigFloat[0, 0, 11], BigFloat(3)),
|
||||||
|
)
|
||||||
|
frozen_nuc = [CartesianIndex(4, k) for k in 1:3]
|
||||||
|
|
||||||
|
# complete the gram matrix using Newton's method with backtracking
|
||||||
|
L_nuc, success_nuc, history_nuc = Engine.realize_gram(gram_nuc, guess_nuc, frozen_nuc)
|
||||||
|
completed_gram_nuc = L_nuc'*Engine.Q*L_nuc
|
||||||
|
println("Completed Gram matrix:\n")
|
||||||
|
display(completed_gram_nuc)
|
||||||
|
if success_nuc
|
||||||
|
println("\nTarget accuracy achieved!")
|
||||||
|
else
|
||||||
|
println("\nFailed to reach target accuracy")
|
||||||
|
end
|
||||||
|
println("Steps: ", size(history_nuc.scaled_loss, 1))
|
||||||
|
println("Loss: ", history_nuc.scaled_loss[end], "\n")
|
||||||
|
|
||||||
|
# --- construct the chain of spheres ---
|
||||||
|
|
||||||
|
# initialize the partial gram matrix for the chain of spheres
|
||||||
|
J = Int64[]
|
||||||
|
K = Int64[]
|
||||||
|
values = BigFloat[]
|
||||||
|
for a in 4:9
|
||||||
|
push!(J, a)
|
||||||
|
push!(K, a)
|
||||||
|
push!(values, 1)
|
||||||
|
|
||||||
|
# each chain sphere is internally tangent to the circumscribing sphere
|
||||||
|
append!(J, [a, 1])
|
||||||
|
append!(K, [1, a])
|
||||||
|
append!(values, [1, 1])
|
||||||
|
|
||||||
|
# each chain sphere is externally tangent to the nucleus spheres
|
||||||
|
for n in 2:3
|
||||||
|
append!(J, [a, n])
|
||||||
|
append!(K, [n, a])
|
||||||
|
append!(values, [-1, -1])
|
||||||
|
end
|
||||||
|
|
||||||
|
# each chain sphere is externally tangent to the next sphere in the chain
|
||||||
|
#=
|
||||||
|
a_next = 4 + mod(a-3, 6)
|
||||||
|
append!(J, [a, a_next])
|
||||||
|
append!(K, [a_next, a])
|
||||||
|
append!(values, [-1, -1])
|
||||||
|
=#
|
||||||
|
end
|
||||||
|
gram_chain = sparse(J, K, values)
|
||||||
|
|
||||||
|
if success_nuc
|
||||||
|
println("--- Chain spheres ---\n")
|
||||||
|
|
||||||
|
# make an initial guess, with the circumscribing and nucleus spheres included
|
||||||
|
# as frozen elements
|
||||||
|
guess_chain = hcat(
|
||||||
|
L_nuc,
|
||||||
|
(
|
||||||
|
Engine.sphere(10*BigFloat[cos(k*π/3), sin(k*π/3), 0], BigFloat(2.5))
|
||||||
|
for k in 1:6
|
||||||
|
)...
|
||||||
|
)
|
||||||
|
frozen_chain = [CartesianIndex(j, k) for k in 1:3 for j in 1:5]
|
||||||
|
|
||||||
|
# complete the gram matrix using Newton's method with backtracking
|
||||||
|
L_chain, success_chain, history_chain = Engine.realize_gram(gram_chain, guess_chain, frozen_chain)
|
||||||
|
completed_gram_chain = L_chain'*Engine.Q*L_chain
|
||||||
|
println("Completed Gram matrix:\n")
|
||||||
|
display(completed_gram_chain)
|
||||||
|
if success_chain
|
||||||
|
println("\nTarget accuracy achieved!")
|
||||||
|
else
|
||||||
|
println("\nFailed to reach target accuracy")
|
||||||
|
end
|
||||||
|
println("Steps: ", size(history_chain.scaled_loss, 1))
|
||||||
|
println("Loss: ", history_chain.scaled_loss[end], "\n")
|
||||||
|
end
|
Loading…
Reference in New Issue
Block a user