Port the Irisawa hexlet test to Rust
In the process, notice that the tolerance scale adjustment was ported wrong, and correct it.
This commit is contained in:
parent
9fe03264ab
commit
9f8632efb3
@ -3,5 +3,6 @@
|
|||||||
# https://jonalmeida.com/posts/2015/01/23/print-cargo/
|
# https://jonalmeida.com/posts/2015/01/23/print-cargo/
|
||||||
#
|
#
|
||||||
|
|
||||||
|
cargo test -- --nocapture engine::tests::irisawa_hexlet_test
|
||||||
cargo test -- --nocapture engine::tests::three_spheres_example
|
cargo test -- --nocapture engine::tests::three_spheres_example
|
||||||
cargo test -- --nocapture engine::tests::point_on_sphere_example
|
cargo test -- --nocapture engine::tests::point_on_sphere_example
|
||||||
|
@ -37,7 +37,7 @@ pub fn sphere_with_offset(dir_x: f64, dir_y: f64, dir_z: f64, off: f64, curv: f6
|
|||||||
|
|
||||||
struct MatrixEntry {
|
struct MatrixEntry {
|
||||||
index: (usize, usize),
|
index: (usize, usize),
|
||||||
val: f64
|
value: f64
|
||||||
}
|
}
|
||||||
|
|
||||||
struct PartialMatrix(Vec<MatrixEntry>);
|
struct PartialMatrix(Vec<MatrixEntry>);
|
||||||
@ -56,7 +56,7 @@ impl PartialMatrix {
|
|||||||
let mut result = DMatrix::<f64>::zeros(rhs.nrows(), rhs.ncols());
|
let mut result = DMatrix::<f64>::zeros(rhs.nrows(), rhs.ncols());
|
||||||
let PartialMatrix(entries) = self;
|
let PartialMatrix(entries) = self;
|
||||||
for ent in entries {
|
for ent in entries {
|
||||||
result[ent.index] = ent.val - rhs[ent.index];
|
result[ent.index] = ent.value - rhs[ent.index];
|
||||||
}
|
}
|
||||||
result
|
result
|
||||||
}
|
}
|
||||||
@ -141,7 +141,7 @@ fn realize_gram(
|
|||||||
let total_dim = element_dim * assembly_dim;
|
let total_dim = element_dim * assembly_dim;
|
||||||
|
|
||||||
// scale the tolerance
|
// scale the tolerance
|
||||||
let scale_adjustment = ((guess.ncols() - frozen.len()) as f64).sqrt();
|
let scale_adjustment = (gram.0.len() as f64).sqrt();
|
||||||
let tol = scale_adjustment * scaled_tol;
|
let tol = scale_adjustment * scaled_tol;
|
||||||
|
|
||||||
// convert the frozen indices to stacked format
|
// convert the frozen indices to stacked format
|
||||||
@ -153,8 +153,8 @@ fn realize_gram(
|
|||||||
let mut state = SearchState::from_config(gram, guess);
|
let mut state = SearchState::from_config(gram, guess);
|
||||||
for _ in 0..max_descent_steps {
|
for _ in 0..max_descent_steps {
|
||||||
// stop if the loss is tolerably low
|
// stop if the loss is tolerably low
|
||||||
println!("loss: {}", state.loss);
|
println!("scaled loss: {}", state.loss / scale_adjustment);
|
||||||
/*println!("projected error: {}", state.err_proj);*/
|
/* println!("projected error: {}", state.err_proj); */
|
||||||
if state.loss < tol { break; }
|
if state.loss < tol { break; }
|
||||||
|
|
||||||
// find the negative gradient of the loss function
|
// find the negative gradient of the loss function
|
||||||
@ -182,6 +182,7 @@ fn realize_gram(
|
|||||||
|
|
||||||
// regularize the Hessian
|
// regularize the Hessian
|
||||||
let min_eigval = hess.symmetric_eigenvalues().min();
|
let min_eigval = hess.symmetric_eigenvalues().min();
|
||||||
|
/* println!("lowest eigenvalue: {}", min_eigval); */
|
||||||
if min_eigval <= 0.0 {
|
if min_eigval <= 0.0 {
|
||||||
hess -= reg_scale * min_eigval * DMatrix::identity(total_dim, total_dim);
|
hess -= reg_scale * min_eigval * DMatrix::identity(total_dim, total_dim);
|
||||||
}
|
}
|
||||||
@ -198,6 +199,12 @@ fn realize_gram(
|
|||||||
}
|
}
|
||||||
|
|
||||||
// compute the Newton step
|
// compute the Newton step
|
||||||
|
/*
|
||||||
|
we need to either handle or eliminate the case where the minimum
|
||||||
|
eigenvalue of the Hessian is zero, so the regularized Hessian is
|
||||||
|
singular. right now, this causes the Cholesky decomposition to return
|
||||||
|
`None`, leading to a panic when we unrap
|
||||||
|
*/
|
||||||
let base_step_stacked = hess.cholesky().unwrap().solve(&neg_grad_stacked);
|
let base_step_stacked = hess.cholesky().unwrap().solve(&neg_grad_stacked);
|
||||||
let base_step = base_step_stacked.reshape_generic(Dyn(element_dim), Dyn(assembly_dim));
|
let base_step = base_step_stacked.reshape_generic(Dyn(element_dim), Dyn(assembly_dim));
|
||||||
|
|
||||||
@ -217,17 +224,17 @@ fn realize_gram(
|
|||||||
|
|
||||||
#[cfg(test)]
|
#[cfg(test)]
|
||||||
mod tests {
|
mod tests {
|
||||||
use std::f64;
|
use std::{array, f64::consts::PI};
|
||||||
|
|
||||||
use super::*;
|
use super::*;
|
||||||
|
|
||||||
#[test]
|
#[test]
|
||||||
fn sub_proj_test() {
|
fn sub_proj_test() {
|
||||||
let target = PartialMatrix(vec![
|
let target = PartialMatrix(vec![
|
||||||
MatrixEntry { index: (0, 0), val: 19.0 },
|
MatrixEntry { index: (0, 0), value: 19.0 },
|
||||||
MatrixEntry { index: (0, 2), val: 39.0 },
|
MatrixEntry { index: (0, 2), value: 39.0 },
|
||||||
MatrixEntry { index: (1, 1), val: 59.0 },
|
MatrixEntry { index: (1, 1), value: 59.0 },
|
||||||
MatrixEntry { index: (1, 2), val: 69.0 }
|
MatrixEntry { index: (1, 2), value: 69.0 }
|
||||||
]);
|
]);
|
||||||
let attempt = DMatrix::<f64>::from_row_slice(2, 3, &[
|
let attempt = DMatrix::<f64>::from_row_slice(2, 3, &[
|
||||||
1.0, 2.0, 3.0,
|
1.0, 2.0, 3.0,
|
||||||
@ -248,7 +255,7 @@ mod tests {
|
|||||||
for k in 0..3 {
|
for k in 0..3 {
|
||||||
entries.push(MatrixEntry {
|
entries.push(MatrixEntry {
|
||||||
index: (j, k),
|
index: (j, k),
|
||||||
val: if j == k { 1.0 } else { -1.0 }
|
value: if j == k { 1.0 } else { -1.0 }
|
||||||
});
|
});
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
@ -266,6 +273,88 @@ mod tests {
|
|||||||
assert!(state.loss.abs() < f64::EPSILON);
|
assert!(state.loss.abs() < f64::EPSILON);
|
||||||
}
|
}
|
||||||
|
|
||||||
|
// this problem is from a sangaku by Irisawa Shintarō Hiroatsu. the article
|
||||||
|
// below includes a nice translation of the problem statement, which was
|
||||||
|
// recorded in Uchida Itsumi's book _Kokon sankan_ (_Mathematics, Past and
|
||||||
|
// Present_)
|
||||||
|
//
|
||||||
|
// "Japan's 'Wasan' Mathematical Tradition", by Abe Haruki
|
||||||
|
// https://www.nippon.com/en/japan-topics/c12801/
|
||||||
|
//
|
||||||
|
#[test]
|
||||||
|
fn irisawa_hexlet_test() {
|
||||||
|
let gram = PartialMatrix({
|
||||||
|
let mut entries = Vec::<MatrixEntry>::new();
|
||||||
|
for s in 0..9 {
|
||||||
|
// each sphere is represented by a spacelike vector
|
||||||
|
entries.push(MatrixEntry { index: (s, s), value: 1.0 });
|
||||||
|
|
||||||
|
// the circumscribing sphere is tangent to all of the other
|
||||||
|
// spheres, with matching orientation
|
||||||
|
if s > 0 {
|
||||||
|
entries.push(MatrixEntry { index: (0, s), value: 1.0 });
|
||||||
|
entries.push(MatrixEntry { index: (s, 0), value: 1.0 });
|
||||||
|
}
|
||||||
|
|
||||||
|
if s > 2 {
|
||||||
|
// each chain sphere is tangent to the "sun" and "moon"
|
||||||
|
// spheres, with opposing orientation
|
||||||
|
for n in 1..3 {
|
||||||
|
entries.push(MatrixEntry { index: (s, n), value: -1.0 });
|
||||||
|
entries.push(MatrixEntry { index: (n, s), value: -1.0 });
|
||||||
|
}
|
||||||
|
|
||||||
|
// each chain sphere is tangent to the next chain sphere,
|
||||||
|
// with opposing orientation
|
||||||
|
let s_next = 3 + (s-2) % 6;
|
||||||
|
entries.push(MatrixEntry { index: (s, s_next), value: -1.0 });
|
||||||
|
entries.push(MatrixEntry { index: (s_next, s), value: -1.0 });
|
||||||
|
}
|
||||||
|
}
|
||||||
|
entries
|
||||||
|
});
|
||||||
|
let guess = DMatrix::from_columns(
|
||||||
|
[
|
||||||
|
sphere(0.0, 0.0, 0.0, 15.0),
|
||||||
|
sphere(0.0, 0.0, -9.0, 5.0),
|
||||||
|
sphere(0.0, 0.0, 11.0, 3.0)
|
||||||
|
].into_iter().chain(
|
||||||
|
(1..=6).map(
|
||||||
|
|k| {
|
||||||
|
let ang = (k as f64) * PI/3.0;
|
||||||
|
sphere(9.0 * ang.cos(), 9.0 * ang.sin(), 0.0, 2.5)
|
||||||
|
}
|
||||||
|
)
|
||||||
|
).collect::<Vec<_>>().as_slice()
|
||||||
|
);
|
||||||
|
let frozen: [(usize, usize); 4] = array::from_fn(|k| (3, k));
|
||||||
|
const SCALED_TOL: f64 = 1.0e-12;
|
||||||
|
let (config, success) = realize_gram(
|
||||||
|
&gram, guess, &frozen,
|
||||||
|
SCALED_TOL, 0.5, 0.9, 1.1, 200, 110
|
||||||
|
);
|
||||||
|
print!("\nCompleted Gram matrix:{}", config.tr_mul(&*Q) * &config);
|
||||||
|
let final_state = SearchState::from_config(&gram, config);
|
||||||
|
if success {
|
||||||
|
println!("Target accuracy achieved!");
|
||||||
|
} else {
|
||||||
|
println!("Failed to reach target accuracy");
|
||||||
|
}
|
||||||
|
println!("Loss: {}", final_state.loss);
|
||||||
|
if success {
|
||||||
|
println!("\nChain diameters:");
|
||||||
|
println!(" {} sun (given)", 1.0 / final_state.config[(3, 3)]);
|
||||||
|
for k in 4..9 {
|
||||||
|
println!(" {} sun", 1.0 / final_state.config[(3, k)]);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
let entry_tol = SCALED_TOL.sqrt();
|
||||||
|
let solution_diams = [30.0, 10.0, 6.0, 5.0, 15.0, 10.0, 3.75, 2.5, 2.0 + 8.0/11.0];
|
||||||
|
for (k, diam) in solution_diams.into_iter().enumerate() {
|
||||||
|
assert!((final_state.config[(3, k)] - 1.0 / diam).abs() < entry_tol);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
// --- process inspection examples ---
|
// --- process inspection examples ---
|
||||||
|
|
||||||
// these tests are meant for human inspection, not automated use. run them
|
// these tests are meant for human inspection, not automated use. run them
|
||||||
@ -281,7 +370,7 @@ mod tests {
|
|||||||
for k in 0..3 {
|
for k in 0..3 {
|
||||||
entries.push(MatrixEntry {
|
entries.push(MatrixEntry {
|
||||||
index: (j, k),
|
index: (j, k),
|
||||||
val: if j == k { 1.0 } else { -1.0 }
|
value: if j == k { 1.0 } else { -1.0 }
|
||||||
});
|
});
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
@ -318,7 +407,7 @@ mod tests {
|
|||||||
for k in 0..2 {
|
for k in 0..2 {
|
||||||
entries.push(MatrixEntry {
|
entries.push(MatrixEntry {
|
||||||
index: (j, k),
|
index: (j, k),
|
||||||
val: if (j, k) == (1, 1) { 1.0 } else { 0.0 }
|
value: if (j, k) == (1, 1) { 1.0 } else { 0.0 }
|
||||||
});
|
});
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
@ -328,9 +417,10 @@ mod tests {
|
|||||||
point(0.0, 0.0, 2.0),
|
point(0.0, 0.0, 2.0),
|
||||||
sphere(0.0, 0.0, 0.0, 1.0)
|
sphere(0.0, 0.0, 0.0, 1.0)
|
||||||
]);
|
]);
|
||||||
|
let frozen = [(3, 0)];
|
||||||
println!();
|
println!();
|
||||||
let (config, success) = realize_gram(
|
let (config, success) = realize_gram(
|
||||||
&gram, guess, &[(3, 0)],
|
&gram, guess, &frozen,
|
||||||
1.0e-12, 0.5, 0.9, 1.1, 200, 110
|
1.0e-12, 0.5, 0.9, 1.1, 200, 110
|
||||||
);
|
);
|
||||||
print!("\nCompleted Gram matrix:{}", config.tr_mul(&*Q) * &config);
|
print!("\nCompleted Gram matrix:{}", config.tr_mul(&*Q) * &config);
|
||||||
|
Loading…
Reference in New Issue
Block a user