Test gradient descent for circles in triangle
This commit is contained in:
parent
828498b3de
commit
9efa99e8be
62
engine-proto/gram-test/circles-in-triangle.jl
Normal file
62
engine-proto/gram-test/circles-in-triangle.jl
Normal file
@ -0,0 +1,62 @@
|
||||
include("Engine.jl")
|
||||
|
||||
using SparseArrays
|
||||
using AbstractAlgebra
|
||||
using PolynomialRoots
|
||||
|
||||
# initialize the partial gram matrix for a sphere inscribed in a regular
|
||||
# tetrahedron
|
||||
J = Int64[]
|
||||
K = Int64[]
|
||||
values = BigFloat[]
|
||||
for j in 1:8
|
||||
for k in 1:8
|
||||
filled = false
|
||||
if j == k
|
||||
push!(values, 1)
|
||||
filled = true
|
||||
elseif (j == 1 || k == 1)
|
||||
push!(values, 0)
|
||||
filled = true
|
||||
elseif (j == 2 || k == 2)
|
||||
push!(values, -1)
|
||||
filled = true
|
||||
end
|
||||
if filled
|
||||
push!(J, j)
|
||||
push!(K, k)
|
||||
end
|
||||
end
|
||||
end
|
||||
append!(J, [6, 4, 6, 5, 7, 5, 7, 3, 8, 3, 8, 4])
|
||||
append!(K, [4, 6, 5, 6, 5, 7, 3, 7, 3, 8, 4, 8])
|
||||
append!(values, fill(-1, 12))
|
||||
gram = sparse(J, K, values)
|
||||
|
||||
# set initial guess (random)
|
||||
## Random.seed!(58271) # stuck; step size collapses on step 48
|
||||
## Random.seed!(58272) # good convergence
|
||||
## Random.seed!(58273) # stuck; step size collapses on step 18
|
||||
## Random.seed!(58274) # stuck
|
||||
## Random.seed!(58275) #
|
||||
## guess = Engine.rand_on_shell(fill(BigFloat(-1), 8))
|
||||
|
||||
# set initial guess
|
||||
guess = hcat(
|
||||
Engine.plane(BigFloat[0, 0, 1], BigFloat(0)),
|
||||
Engine.sphere(BigFloat[0, 0, 0], BigFloat(1//2)),
|
||||
Engine.plane(BigFloat[1, 0, 0], BigFloat(1)),
|
||||
Engine.plane(BigFloat[cos(2pi/3), sin(2pi/3), 0], BigFloat(1)),
|
||||
Engine.plane(BigFloat[cos(-2pi/3), sin(-2pi/3), 0], BigFloat(1)),
|
||||
Engine.sphere(BigFloat[-1, 0, 0], BigFloat(1//5)),
|
||||
Engine.sphere(BigFloat[cos(-pi/3), sin(-pi/3), 0], BigFloat(1//5)),
|
||||
Engine.sphere(BigFloat[cos(pi/3), sin(pi/3), 0], BigFloat(1//5))
|
||||
)
|
||||
|
||||
# complete the gram matrix using gradient descent
|
||||
L, history = Engine.realize_gram(gram, guess, max_descent_steps = 200)
|
||||
completed_gram = L'*Engine.Q*L
|
||||
println("Completed Gram matrix:\n")
|
||||
display(completed_gram)
|
||||
println("\nSteps: ", size(history.stepsize, 1))
|
||||
println("Loss: ", history.scaled_loss[end], "\n")
|
Loading…
Reference in New Issue
Block a user