Irisawa hexlet: drop unviable approach
The approach in the deleted file can't work, because the "sun" and "moon" spheres can't be placed arbitrarily.
This commit is contained in:
parent
a26f1e3927
commit
8a77cd7484
@ -1,105 +0,0 @@
|
||||
include("Engine.jl")
|
||||
|
||||
using SparseArrays
|
||||
|
||||
# --- construct the nucleus spheres ---
|
||||
|
||||
println("--- Nucleus spheres ---\n")
|
||||
|
||||
# initialize the partial gram matrix for the circumscribing and nucleus spheres
|
||||
J = Int64[]
|
||||
K = Int64[]
|
||||
values = BigFloat[]
|
||||
for n in 1:3
|
||||
push!(J, n)
|
||||
push!(K, n)
|
||||
push!(values, 1)
|
||||
if n > 1
|
||||
append!(J, [1, n])
|
||||
append!(K, [n, 1])
|
||||
append!(values, [1, 1])
|
||||
end
|
||||
end
|
||||
gram_nuc = sparse(J, K, values)
|
||||
|
||||
# make an initial guess
|
||||
guess_nuc = hcat(
|
||||
Engine.sphere(BigFloat[0, 0, 0], BigFloat(15)),
|
||||
Engine.sphere(BigFloat[0, 0, -10], BigFloat(5)),
|
||||
Engine.sphere(BigFloat[0, 0, 11], BigFloat(3)),
|
||||
)
|
||||
frozen_nuc = [CartesianIndex(4, k) for k in 1:3]
|
||||
|
||||
# complete the gram matrix using Newton's method with backtracking
|
||||
L_nuc, success_nuc, history_nuc = Engine.realize_gram(gram_nuc, guess_nuc, frozen_nuc)
|
||||
completed_gram_nuc = L_nuc'*Engine.Q*L_nuc
|
||||
println("Completed Gram matrix:\n")
|
||||
display(completed_gram_nuc)
|
||||
if success_nuc
|
||||
println("\nTarget accuracy achieved!")
|
||||
else
|
||||
println("\nFailed to reach target accuracy")
|
||||
end
|
||||
println("Steps: ", size(history_nuc.scaled_loss, 1))
|
||||
println("Loss: ", history_nuc.scaled_loss[end], "\n")
|
||||
|
||||
# --- construct the chain of spheres ---
|
||||
|
||||
# initialize the partial gram matrix for the chain of spheres
|
||||
J = Int64[]
|
||||
K = Int64[]
|
||||
values = BigFloat[]
|
||||
for a in 4:9
|
||||
push!(J, a)
|
||||
push!(K, a)
|
||||
push!(values, 1)
|
||||
|
||||
# each chain sphere is internally tangent to the circumscribing sphere
|
||||
append!(J, [a, 1])
|
||||
append!(K, [1, a])
|
||||
append!(values, [1, 1])
|
||||
|
||||
# each chain sphere is externally tangent to the nucleus spheres
|
||||
for n in 2:3
|
||||
append!(J, [a, n])
|
||||
append!(K, [n, a])
|
||||
append!(values, [-1, -1])
|
||||
end
|
||||
|
||||
# each chain sphere is externally tangent to the next sphere in the chain
|
||||
#=
|
||||
a_next = 4 + mod(a-3, 6)
|
||||
append!(J, [a, a_next])
|
||||
append!(K, [a_next, a])
|
||||
append!(values, [-1, -1])
|
||||
=#
|
||||
end
|
||||
gram_chain = sparse(J, K, values)
|
||||
|
||||
if success_nuc
|
||||
println("--- Chain spheres ---\n")
|
||||
|
||||
# make an initial guess, with the circumscribing and nucleus spheres included
|
||||
# as frozen elements
|
||||
guess_chain = hcat(
|
||||
L_nuc,
|
||||
(
|
||||
Engine.sphere(10*BigFloat[cos(k*π/3), sin(k*π/3), 0], BigFloat(2.5))
|
||||
for k in 1:6
|
||||
)...
|
||||
)
|
||||
frozen_chain = [CartesianIndex(j, k) for k in 1:3 for j in 1:5]
|
||||
|
||||
# complete the gram matrix using Newton's method with backtracking
|
||||
L_chain, success_chain, history_chain = Engine.realize_gram(gram_chain, guess_chain, frozen_chain)
|
||||
completed_gram_chain = L_chain'*Engine.Q*L_chain
|
||||
println("Completed Gram matrix:\n")
|
||||
display(completed_gram_chain)
|
||||
if success_chain
|
||||
println("\nTarget accuracy achieved!")
|
||||
else
|
||||
println("\nFailed to reach target accuracy")
|
||||
end
|
||||
println("Steps: ", size(history_chain.scaled_loss, 1))
|
||||
println("Loss: ", history_chain.scaled_loss[end], "\n")
|
||||
end
|
Loading…
Reference in New Issue
Block a user