Order variables by coordinate and then element

In other words, order coordinates like
  (rₛ₁, rₛ₂, sₛ₁, sₛ₂, xₛ₁, xₛ₂, xₚ₃, yₛ₁, yₛ₂, yₚ₃, zₛ₁, zₛ₂, zₚ₃)
instead of like
  (rₛ₁, sₛ₁, xₛ₁, yₛ₁, zₛ₁, rₛ₂, sₛ₂, xₛ₂, yₛ₂, zₛ₂, xₚ₃, yₚ₃, zₚ₃).

In the test cases, this really cuts down the size of the Gröbner basis.
This commit is contained in:
Aaron Fenyes 2024-01-27 14:21:03 -05:00
parent 463a3b21e1
commit 86dbd9ea45

View File

@ -12,46 +12,68 @@ using Groebner
abstract type Element{T} end
mutable struct Point{T} <: Element{T}
coords::Union{Vector{MPolyRingElem{T}}, Nothing}
coords::Vector{MPolyRingElem{T}}
vec::Union{Vector{MPolyRingElem{T}}, Nothing}
rel::Nothing
## [to do] constructor argument never needed?
Point{T}(
coords::Union{Vector{MPolyRingElem{T}}, Nothing} = nothing,
coords::Vector{MPolyRingElem{T}} = MPolyRingElem{T}[],
vec::Union{Vector{MPolyRingElem{T}}, Nothing} = nothing
) where T = new(coords, vec, nothing)
end
coordnames(_::Point) = [:xₚ, :yₚ, :zₚ]
##coordnames(_::Point) = [:xₚ, :yₚ, :zₚ]
function buildvec(pt::Point, coordqueue)
coordring = parent(coordqueue[1])
pt.coords = splice!(coordqueue, 1:3)
function buildvec!(pt::Point)
coordring = parent(pt.coords[1])
pt.vec = [one(coordring), dot(pt.coords, pt.coords), pt.coords...]
end
mutable struct Sphere{T} <: Element{T}
coords::Union{Vector{MPolyRingElem{T}}, Nothing}
coords::Vector{MPolyRingElem{T}}
vec::Union{Vector{MPolyRingElem{T}}, Nothing}
rel::Union{MPolyRingElem{T}, Nothing}
## [to do] constructor argument never needed?
Sphere{T}(
coords::Union{Vector{MPolyRingElem{T}}, Nothing} = nothing,
coords::Vector{MPolyRingElem{T}} = MPolyRingElem{T}[],
vec::Union{Vector{MPolyRingElem{T}}, Nothing} = nothing,
rel::Union{MPolyRingElem{T}, Nothing} = nothing
) where T = new(coords, vec, rel)
end
coordnames(_::Sphere) = [:rₛ, :sₛ, :xₛ, :yₛ, :zₛ]
##coordnames(_::Sphere) = [:rₛ, :sₛ, :xₛ, :yₛ, :zₛ]
function buildvec(sph::Sphere, coordqueue)
coordring = parent(coordqueue[1])
sph.coords = splice!(coordqueue, 1:5)
function buildvec!(sph::Sphere)
coordring = parent(sph.coords[1])
sph.vec = sph.coords
sph.rel = mprod(sph.coords, sph.coords) + one(coordring)
end
const coordnames = IdDict{Symbol, Vector{Union{Symbol, Nothing}}}(
nameof(Point) => [nothing, nothing, :xₚ, :yₚ, :zₚ],
nameof(Sphere) => [:rₛ, :sₛ, :xₛ, :yₛ, :zₛ]
)
coordname(elem::Element, index) = coordnames[nameof(typeof(elem))][index]
function pushcoordname!(coordnamelist, indexed_elem::Tuple{Any, Element}, coordindex)
elemindex, elem = indexed_elem
name = coordname(elem, coordindex)
if !isnothing(name)
subscript = Subscripts.sub(string(elemindex))
push!(coordnamelist, Symbol(name, subscript))
end
end
function takecoord!(coordlist, indexed_elem::Tuple{Any, Element}, coordindex)
elem = indexed_elem[2]
if !isnothing(coordname(elem, coordindex))
push!(elem.coords, popfirst!(coordlist))
end
end
# --- primitive relations ---
abstract type Relation{T} end
@ -99,22 +121,38 @@ function Base.push!(ctx::Construction{T}, rel::Relation{T}) where T
end
function realize(ctx::Construction{T}) where T
# collect variable names
# collect coordinate names
coordnamelist = Symbol[]
elemenum = enumerate(ctx.elements)
for (index, elem) in elemenum
subscript = Subscripts.sub(string(index))
append!(coordnamelist,
[Symbol(name, subscript) for name in coordnames(elem)]
)
for coordindex in 1:5
for indexed_elem in elemenum
pushcoordname!(coordnamelist, indexed_elem, coordindex)
end
end
display(collect(elemenum))
display(coordnamelist)
println()
# construct coordinate ring
coordring, coordqueue = polynomial_ring(parent_type(T)(), coordnamelist, ordering = :degrevlex)
# retrieve coordinates
for (_, elem) in elemenum
empty!(elem.coords)
end
for coordindex in 1:5
for indexed_elem in elemenum
takecoord!(coordqueue, indexed_elem, coordindex)
end
end
# construct coordinate vectors
for (_, elem) in elemenum
buildvec(elem, coordqueue)
buildvec!(elem)
display(elem.coords)
display(elem.vec)
println()
end
# turn relations into equations