Realize geometric elements as symbolic vectors
This commit is contained in:
parent
b864cf7866
commit
4d5aa3b327
@ -1,34 +1,105 @@
|
||||
module Engine
|
||||
|
||||
export Construction, Sphere, mprod, point
|
||||
export Construction, mprod
|
||||
|
||||
import Subscripts
|
||||
using LinearAlgebra
|
||||
using AbstractAlgebra
|
||||
using Groebner
|
||||
|
||||
mutable struct Construction
|
||||
nextid::Int64
|
||||
# --- primitve elements ---
|
||||
|
||||
Construction(; nextid = 0) = new(nextid)
|
||||
mutable struct Point{T}
|
||||
coords::Union{Vector{MPolyRingElem{T}}, Nothing}
|
||||
vec::Union{Vector{MPolyRingElem{T}}, Nothing}
|
||||
|
||||
## [to do] constructor argument never needed?
|
||||
Point{T}(vec::Union{Vector{MPolyRingElem{T}}, Nothing} = nothing) where T = new(vec)
|
||||
end
|
||||
|
||||
struct Sphere{T<:Number}
|
||||
vec::Vector{T}
|
||||
id
|
||||
coordnames(_::Point) = [:xₚ, :yₚ, :zₚ]
|
||||
|
||||
function Sphere(vec::Vector{T}, ctx::Construction) where T <: Number
|
||||
id = ctx.nextid
|
||||
ctx.nextid += 1
|
||||
new{T}(vec, id)
|
||||
function buildvec(pt::Point, coordqueue)
|
||||
pt.coords = splice!(coordqueue, 1:3)
|
||||
coordring = parent(coordqueue[1])
|
||||
pt.vec = [one(coordring), dot(pt.coords, pt.coords), pt.coords...]
|
||||
end
|
||||
|
||||
mutable struct Sphere{T}
|
||||
coords::Union{Vector{MPolyRingElem{T}}, Nothing}
|
||||
vec::Union{Vector{MPolyRingElem{T}}, Nothing}
|
||||
|
||||
Sphere{T}(vec::Union{Vector{MPolyRingElem{T}}, Nothing} = nothing) where T = new(vec)
|
||||
end
|
||||
|
||||
coordnames(_::Sphere) = [:rₛ, :sₛ, :xₛ, :yₛ, :zₛ]
|
||||
|
||||
function buildvec(sph::Sphere, coordqueue)
|
||||
sph.coords = splice!(coordqueue, 1:5)
|
||||
sph.vec = sph.coords
|
||||
end
|
||||
|
||||
# --- primitive relations ---
|
||||
|
||||
abstract type Relation{T} end
|
||||
|
||||
mprod(v, w) = v[1]*w[2] + w[1]*v[2] - dot(v[3:end], w[3:end])
|
||||
|
||||
struct LiesOn{T} <: Relation{T}
|
||||
pt::Point{T}
|
||||
sph::Sphere{T}
|
||||
end
|
||||
|
||||
struct AlignsWithBy{T} <: Relation{T}
|
||||
sph_v::Sphere{T}
|
||||
sph_w::Sphere{T}
|
||||
cos_angle::T
|
||||
end
|
||||
|
||||
# --- constructions ---
|
||||
|
||||
mutable struct Construction{T}
|
||||
points::Vector{Point{T}}
|
||||
spheres::Vector{Sphere{T}}
|
||||
|
||||
Construction{T}(; points = Point{T}[], spheres = Sphere{T}[]) where T = new{T}(points, spheres)
|
||||
end
|
||||
|
||||
function Base.push!(ctx::Construction{T}, elem::Point{T}) where T
|
||||
push!(ctx.points, elem)
|
||||
end
|
||||
|
||||
function Base.push!(ctx::Construction{T}, elem::Sphere{T}) where T
|
||||
push!(ctx.spheres, elem)
|
||||
end
|
||||
|
||||
function realize(ctx::Construction{T}) where T
|
||||
# collect variable names
|
||||
allcoordnames = Symbol[]
|
||||
elements = vcat(ctx.points, ctx.spheres)
|
||||
for (index, elem) in enumerate(elements)
|
||||
subscript = Subscripts.sub(string(index))
|
||||
append!(allcoordnames,
|
||||
[Symbol(name, subscript) for name in coordnames(elem)]
|
||||
)
|
||||
end
|
||||
|
||||
# construct coordinate ring
|
||||
coordring, coordqueue = polynomial_ring(parent_type(T)(), allcoordnames)
|
||||
|
||||
# construct coordinate vectors
|
||||
for elem in elements
|
||||
buildvec(elem, coordqueue)
|
||||
end
|
||||
end
|
||||
|
||||
function mprod(sv::Sphere, sw::Sphere)
|
||||
v = sv.vec
|
||||
w = sw.vec
|
||||
v[1]*w[2] + v[2]*w[1] - dot(v[3:end], w[3:end])
|
||||
end
|
||||
|
||||
point(pt::Vector{<:Number}, ctx::Construction) =
|
||||
Sphere([one(eltype(pt)), dot(pt, pt), pt...], ctx)
|
||||
# ~~~ sandbox setup ~~~
|
||||
|
||||
end
|
||||
a = Engine.Point{Rational{Int64}}()
|
||||
b = Engine.Point{Rational{Int64}}()
|
||||
s = Engine.Sphere{Rational{Int64}}()
|
||||
ctx = Engine.Construction{Rational{Int64}}(points = [a])
|
||||
Engine.push!(ctx, b)
|
||||
Engine.push!(ctx, s)
|
Loading…
Reference in New Issue
Block a user