Realize geometric elements as symbolic vectors

This commit is contained in:
Aaron Fenyes 2024-01-26 11:14:32 -05:00
parent b864cf7866
commit 4d5aa3b327

View File

@ -1,34 +1,105 @@
module Engine module Engine
export Construction, Sphere, mprod, point export Construction, mprod
import Subscripts
using LinearAlgebra using LinearAlgebra
using AbstractAlgebra
using Groebner using Groebner
mutable struct Construction # --- primitve elements ---
nextid::Int64
mutable struct Point{T}
coords::Union{Vector{MPolyRingElem{T}}, Nothing}
vec::Union{Vector{MPolyRingElem{T}}, Nothing}
Construction(; nextid = 0) = new(nextid) ## [to do] constructor argument never needed?
Point{T}(vec::Union{Vector{MPolyRingElem{T}}, Nothing} = nothing) where T = new(vec)
end end
struct Sphere{T<:Number} coordnames(_::Point) = [:xₚ, :yₚ, :zₚ]
vec::Vector{T}
id function buildvec(pt::Point, coordqueue)
pt.coords = splice!(coordqueue, 1:3)
coordring = parent(coordqueue[1])
pt.vec = [one(coordring), dot(pt.coords, pt.coords), pt.coords...]
end
mutable struct Sphere{T}
coords::Union{Vector{MPolyRingElem{T}}, Nothing}
vec::Union{Vector{MPolyRingElem{T}}, Nothing}
function Sphere(vec::Vector{T}, ctx::Construction) where T <: Number Sphere{T}(vec::Union{Vector{MPolyRingElem{T}}, Nothing} = nothing) where T = new(vec)
id = ctx.nextid end
ctx.nextid += 1
new{T}(vec, id) coordnames(_::Sphere) = [:rₛ, :sₛ, :xₛ, :yₛ, :zₛ]
function buildvec(sph::Sphere, coordqueue)
sph.coords = splice!(coordqueue, 1:5)
sph.vec = sph.coords
end
# --- primitive relations ---
abstract type Relation{T} end
mprod(v, w) = v[1]*w[2] + w[1]*v[2] - dot(v[3:end], w[3:end])
struct LiesOn{T} <: Relation{T}
pt::Point{T}
sph::Sphere{T}
end
struct AlignsWithBy{T} <: Relation{T}
sph_v::Sphere{T}
sph_w::Sphere{T}
cos_angle::T
end
# --- constructions ---
mutable struct Construction{T}
points::Vector{Point{T}}
spheres::Vector{Sphere{T}}
Construction{T}(; points = Point{T}[], spheres = Sphere{T}[]) where T = new{T}(points, spheres)
end
function Base.push!(ctx::Construction{T}, elem::Point{T}) where T
push!(ctx.points, elem)
end
function Base.push!(ctx::Construction{T}, elem::Sphere{T}) where T
push!(ctx.spheres, elem)
end
function realize(ctx::Construction{T}) where T
# collect variable names
allcoordnames = Symbol[]
elements = vcat(ctx.points, ctx.spheres)
for (index, elem) in enumerate(elements)
subscript = Subscripts.sub(string(index))
append!(allcoordnames,
[Symbol(name, subscript) for name in coordnames(elem)]
)
end
# construct coordinate ring
coordring, coordqueue = polynomial_ring(parent_type(T)(), allcoordnames)
# construct coordinate vectors
for elem in elements
buildvec(elem, coordqueue)
end end
end end
function mprod(sv::Sphere, sw::Sphere)
v = sv.vec
w = sw.vec
v[1]*w[2] + v[2]*w[1] - dot(v[3:end], w[3:end])
end end
point(pt::Vector{<:Number}, ctx::Construction) = # ~~~ sandbox setup ~~~
Sphere([one(eltype(pt)), dot(pt, pt), pt...], ctx)
end a = Engine.Point{Rational{Int64}}()
b = Engine.Point{Rational{Int64}}()
s = Engine.Sphere{Rational{Int64}}()
ctx = Engine.Construction{Rational{Int64}}(points = [a])
Engine.push!(ctx, b)
Engine.push!(ctx, s)