Factor out the realization of the Irisawa hexlet

This commit is contained in:
Aaron Fenyes 2024-11-09 01:04:44 -08:00
parent 3a0f3a8d1c
commit 4094301318

View File

@ -335,8 +335,7 @@ mod tests {
// "Japan's 'Wasan' Mathematical Tradition", by Abe Haruki // "Japan's 'Wasan' Mathematical Tradition", by Abe Haruki
// https://www.nippon.com/en/japan-topics/c12801/ // https://www.nippon.com/en/japan-topics/c12801/
// //
#[test] fn realize_irisawa_hexlet(scaled_tol: f64) -> (DMatrix<f64>, bool, DescentHistory) {
fn irisawa_hexlet_test() {
let gram = { let gram = {
let mut gram_to_be = PartialMatrix::new(); let mut gram_to_be = PartialMatrix::new();
for s in 0..9 { for s in 0..9 {
@ -364,6 +363,7 @@ mod tests {
} }
gram_to_be gram_to_be
}; };
let guess = DMatrix::from_columns( let guess = DMatrix::from_columns(
[ [
sphere(0.0, 0.0, 0.0, 15.0), sphere(0.0, 0.0, 0.0, 15.0),
@ -378,17 +378,31 @@ mod tests {
) )
).collect::<Vec<_>>().as_slice() ).collect::<Vec<_>>().as_slice()
); );
// the frozen entries fix the radii of the circumscribing sphere, the
// "sun" and "moon" spheres, and one of the chain spheres
let frozen: [(usize, usize); 4] = array::from_fn(|k| (3, k)); let frozen: [(usize, usize); 4] = array::from_fn(|k| (3, k));
const SCALED_TOL: f64 = 1.0e-12;
let (config, success, history) = realize_gram( realize_gram(
&gram, guess, &frozen, &gram, guess, &frozen,
SCALED_TOL, 0.5, 0.9, 1.1, 200, 110 scaled_tol, 0.5, 0.9, 1.1, 200, 110
); )
}
#[test]
fn irisawa_hexlet_test() {
// solve Irisawa's problem
const SCALED_TOL: f64 = 1.0e-12;
let (config, success, history) = realize_irisawa_hexlet(SCALED_TOL);
// check against Irisawa's solution
let entry_tol = SCALED_TOL.sqrt(); let entry_tol = SCALED_TOL.sqrt();
let solution_diams = [30.0, 10.0, 6.0, 5.0, 15.0, 10.0, 3.75, 2.5, 2.0 + 8.0/11.0]; let solution_diams = [30.0, 10.0, 6.0, 5.0, 15.0, 10.0, 3.75, 2.5, 2.0 + 8.0/11.0];
for (k, diam) in solution_diams.into_iter().enumerate() { for (k, diam) in solution_diams.into_iter().enumerate() {
assert!((config[(3, k)] - 1.0 / diam).abs() < entry_tol); assert!((config[(3, k)] - 1.0 / diam).abs() < entry_tol);
} }
// print info
print!("\nCompleted Gram matrix:{}", config.tr_mul(&*Q) * &config); print!("\nCompleted Gram matrix:{}", config.tr_mul(&*Q) * &config);
if success { if success {
println!("Target accuracy achieved!"); println!("Target accuracy achieved!");