Get familiar with Ganja.js inline syntax
This commit is contained in:
parent
d1ce91d2aa
commit
3c34481519
@ -18,34 +18,30 @@
|
||||
</head>
|
||||
<body>
|
||||
<script>
|
||||
// the "points spheres plane" example from the Ganja coffee shop
|
||||
//
|
||||
// https://enkimute.github.io/ganja.js/examples/coffeeshop.html#cga3d_points_spheres_planes
|
||||
//
|
||||
// in the default view, e4 + e5 is the point at infinity
|
||||
CGA3 = Algebra(4, 1);
|
||||
v1 = CGA3.inline(() => 1e1 + 1e5)();
|
||||
v2 = CGA3.inline(() => 1e2 + 1e5)();
|
||||
v3 = CGA3.inline(() => 1e3 + 1e5)();
|
||||
w1 = CGA3.inline(() => 1e1 - Math.sqrt(0.2)*1e4 + Math.sqrt(1.2)*1e5)();
|
||||
w2 = CGA3.inline(() => 1e2 - Math.sqrt(0.2)*1e4 + Math.sqrt(1.2)*1e5)();
|
||||
w3 = CGA3.inline(() => 1e3 - Math.sqrt(0.2)*1e4 + Math.sqrt(1.2)*1e5)();
|
||||
s = CGA3.inline(() => -Math.sqrt(1.2)*1e4 + Math.sqrt(0.2)*1e5);
|
||||
|
||||
// Create a Clifford Algebra with 4,1 metric for 3D CGA.
|
||||
Algebra(4,1,()=>{
|
||||
// We start by defining a null basis, and upcasting for points
|
||||
var ni = 1e4+1e5, no = .5e5-.5e4;
|
||||
var up = (x)=> no + x + .5*x*x*ni;
|
||||
|
||||
// Next we'll define 4 points
|
||||
var p1 = up(1e1), p2 = up(1e2), p3 = up(-1e3), p4 = up(-1e2);
|
||||
|
||||
// The outer product can be used to construct the sphere through
|
||||
// any four points.
|
||||
var s = ()=>p1^p2^p3^p4;
|
||||
|
||||
// The outer product between any three points and infinity is a plane.
|
||||
var p = ()=>p1^p2^p3^ni;
|
||||
|
||||
// Graph the items.
|
||||
document.body.appendChild(this.graph([
|
||||
0x00FF0000, p1, "p1", p2, "p2", p3, "p3", p4, "p4", // points
|
||||
0xE0008800, p, "p", // plane
|
||||
0xE00000FF, s, "s" // sphere
|
||||
], {conformal: true, gl: true, grid: true}));
|
||||
});
|
||||
document.body.appendChild(CGA3.graph(
|
||||
[
|
||||
0xff00b0, v1,
|
||||
0x00ffb0, v2,
|
||||
0x00b0ff, v3,
|
||||
0x800040, w1,
|
||||
0x008040, w2,
|
||||
0x004080, w3,
|
||||
0xd0e0f0, s
|
||||
],
|
||||
{
|
||||
conformal: true, gl: true, grid: true
|
||||
}
|
||||
));
|
||||
</script>
|
||||
</body>
|
||||
</html>
|
||||
|
@ -30,28 +30,30 @@ canvas {
|
||||
# https://enkimute.github.io/ganja.js/examples/coffeeshop.html#cga3d_points_spheres_planes
|
||||
#
|
||||
sphere_example = """
|
||||
Algebra(4, 1, ()=>{
|
||||
// We start by defining a null basis, and upcasting for points
|
||||
var ni = 1e4+1e5, no = .5e5-.5e4;
|
||||
var up = (x)=> no + x + .5*x*x*ni;
|
||||
// in the default view, e4 + e5 is the point at infinity
|
||||
CGA3 = Algebra(4, 1);
|
||||
v1 = CGA3.inline(() => 1e1 + 1e5)();
|
||||
v2 = CGA3.inline(() => 1e2 + 1e5)();
|
||||
v3 = CGA3.inline(() => 1e3 + 1e5)();
|
||||
w1 = CGA3.inline(() => 1e1 - Math.sqrt(0.2)*1e4 + Math.sqrt(1.2)*1e5)();
|
||||
w2 = CGA3.inline(() => 1e2 - Math.sqrt(0.2)*1e4 + Math.sqrt(1.2)*1e5)();
|
||||
w3 = CGA3.inline(() => 1e3 - Math.sqrt(0.2)*1e4 + Math.sqrt(1.2)*1e5)();
|
||||
s = CGA3.inline(() => -Math.sqrt(1.2)*1e4 + Math.sqrt(0.2)*1e5);
|
||||
|
||||
// Next we'll define 4 points
|
||||
var p1 = up(1e1), p2 = up(1e2), p3 = up(-1e3), p4 = up(-1e2);
|
||||
|
||||
// The outer product can be used to construct the sphere through
|
||||
// any four points.
|
||||
var s = ()=>p1^p2^p3^p4;
|
||||
|
||||
// The outer product between any three points and infinity is a plane.
|
||||
var p = ()=>p1^p2^p3^ni;
|
||||
|
||||
// Graph the items.
|
||||
document.body.appendChild(this.graph([
|
||||
0x00FF0000, p1, "p1", p2, "p2", p3, "p3", p4, "p4", // points
|
||||
0xE0008800, p, "p", // plane
|
||||
0xE00000FF, s, "s" // sphere
|
||||
], {conformal: true, gl: true, grid: true}));
|
||||
});
|
||||
document.body.appendChild(CGA3.graph(
|
||||
[
|
||||
0xff00b0, v1,
|
||||
0x00ffb0, v2,
|
||||
0x00b0ff, v3,
|
||||
0x800040, w1,
|
||||
0x008040, w2,
|
||||
0x004080, w3,
|
||||
0xd0e0f0, s
|
||||
],
|
||||
{
|
||||
conformal: true, gl: true, grid: true
|
||||
}
|
||||
));
|
||||
"""
|
||||
|
||||
# === page construction ===
|
||||
|
Loading…
Reference in New Issue
Block a user