Clean up example of three mutually tangent spheres
This commit is contained in:
parent
f2000e5731
commit
3170a933e4
@ -198,7 +198,6 @@ function realize(ctx::Construction{T}) where T
|
|||||||
end
|
end
|
||||||
|
|
||||||
(Generic.Ideal(coordring, eqns), eqns)
|
(Generic.Ideal(coordring, eqns), eqns)
|
||||||
## [test] (nothing, eqns)
|
|
||||||
end
|
end
|
||||||
|
|
||||||
end
|
end
|
@ -23,63 +23,19 @@ using GLMakie
|
|||||||
|
|
||||||
CoeffType = Rational{Int64}
|
CoeffType = Rational{Int64}
|
||||||
|
|
||||||
##a = Engine.Point{CoeffType}()
|
|
||||||
##s = Engine.Sphere{CoeffType}()
|
|
||||||
##a_on_s = Engine.LiesOn{CoeffType}(a, s)
|
|
||||||
##ctx = Engine.Construction{CoeffType}(elements = Set([a]), relations= Set([a_on_s]))
|
|
||||||
##ideal_a_s = Engine.realize(ctx)
|
|
||||||
##println("A point on a sphere: $(Engine.dimension(ideal_a_s)) degrees of freedom")
|
|
||||||
|
|
||||||
##b = Engine.Point{CoeffType}()
|
|
||||||
##b_on_s = Engine.LiesOn{CoeffType}(b, s)
|
|
||||||
##Engine.push!(ctx, b)
|
|
||||||
##Engine.push!(ctx, s)
|
|
||||||
##Engine.push!(ctx, b_on_s)
|
|
||||||
##ideal_ab_s, eqns_ab_s = Engine.realize(ctx)
|
|
||||||
##freedom = Engine.dimension(ideal_ab_s)
|
|
||||||
##println("Two points on a sphere: $freedom degrees of freedom")
|
|
||||||
|
|
||||||
spheres = [Engine.Sphere{CoeffType}() for _ in 1:3]
|
spheres = [Engine.Sphere{CoeffType}() for _ in 1:3]
|
||||||
tangencies = [
|
tangencies = [
|
||||||
Engine.AlignsWithBy{CoeffType}(
|
Engine.AlignsWithBy{CoeffType}(
|
||||||
spheres[n],
|
spheres[n],
|
||||||
spheres[mod1(n+1, length(spheres))],
|
spheres[mod1(n+1, length(spheres))],
|
||||||
CoeffType([1, 1, 1][n])
|
CoeffType(1)
|
||||||
)
|
)
|
||||||
for n in 1:3
|
for n in 1:3
|
||||||
]
|
]
|
||||||
##tangencies = [
|
|
||||||
##Engine.LiesOn{CoeffType}(points[1], spheres[2]),
|
|
||||||
##Engine.LiesOn{CoeffType}(points[1], spheres[3]),
|
|
||||||
##Engine.LiesOn{CoeffType}(points[2], spheres[3]),
|
|
||||||
##Engine.LiesOn{CoeffType}(points[2], spheres[1]),
|
|
||||||
##Engine.LiesOn{CoeffType}(points[3], spheres[1]),
|
|
||||||
##Engine.LiesOn{CoeffType}(points[3], spheres[2])
|
|
||||||
##]
|
|
||||||
ctx_tan_sph = Engine.Construction{CoeffType}(elements = spheres, relations = tangencies)
|
ctx_tan_sph = Engine.Construction{CoeffType}(elements = spheres, relations = tangencies)
|
||||||
ideal_tan_sph, eqns_tan_sph = Engine.realize(ctx_tan_sph)
|
ideal_tan_sph, eqns_tan_sph = Engine.realize(ctx_tan_sph)
|
||||||
##small_eqns_tan_sph = eqns_tan_sph
|
|
||||||
##small_eqns_tan_sph = [
|
|
||||||
## eqns_tan_sph;
|
|
||||||
## spheres[2].coords - [1, 0, 0, 0, 1];
|
|
||||||
## spheres[3].coords - [1, 0, 0, 0, -1];
|
|
||||||
##]
|
|
||||||
##small_ideal_tan_sph = Generic.Ideal(base_ring(ideal_tan_sph), small_eqns_tan_sph)
|
|
||||||
freedom = Engine.dimension(ideal_tan_sph)
|
freedom = Engine.dimension(ideal_tan_sph)
|
||||||
println("Three mutually tangent spheres, with two fixed: $freedom degrees of freedom")
|
println("Three mutually tangent spheres: $freedom degrees of freedom")
|
||||||
|
|
||||||
##points = [Engine.Point{CoeffType}() for _ in 1:3]
|
|
||||||
##spheres = [Engine.Sphere{CoeffType}() for _ in 1:2]
|
|
||||||
##ctx_joined = Engine.Construction{CoeffType}(
|
|
||||||
## elements = Set([points; spheres]),
|
|
||||||
## relations= Set([
|
|
||||||
## Engine.LiesOn{CoeffType}(pt, sph)
|
|
||||||
## for pt in points for sph in spheres
|
|
||||||
## ])
|
|
||||||
##)
|
|
||||||
##ideal_joined, eqns_joined = Engine.realize(ctx_joined)
|
|
||||||
##freedom = Engine.dimension(ideal_joined)
|
|
||||||
##println("$(length(points)) points on $(length(spheres)) spheres: $freedom degrees of freedom")
|
|
||||||
|
|
||||||
# --- test rational cut ---
|
# --- test rational cut ---
|
||||||
|
|
||||||
@ -90,7 +46,7 @@ vbls = Variable.(symbols(coordring))
|
|||||||
system = CompiledSystem(System(eqns_tan_sph, variables = vbls))
|
system = CompiledSystem(System(eqns_tan_sph, variables = vbls))
|
||||||
norm2 = vec -> real(dot(conj.(vec), vec))
|
norm2 = vec -> real(dot(conj.(vec), vec))
|
||||||
rng = MersenneTwister(6071)
|
rng = MersenneTwister(6071)
|
||||||
n_planes = 36
|
n_planes = 6
|
||||||
samples = []
|
samples = []
|
||||||
for _ in 1:n_planes
|
for _ in 1:n_planes
|
||||||
real_solns = solution.(Engine.Numerical.real_samples(system, freedom, rng = rng))
|
real_solns = solution.(Engine.Numerical.real_samples(system, freedom, rng = rng))
|
||||||
@ -100,22 +56,7 @@ for _ in 1:n_planes
|
|||||||
end
|
end
|
||||||
end
|
end
|
||||||
end
|
end
|
||||||
println("$(length(samples)) sample solutions:")
|
println("Found $(length(samples)) sample solutions")
|
||||||
##for soln in samples
|
|
||||||
## ## display([vbls round.(soln, digits = 6)]) ## [verbose]
|
|
||||||
## k_sq = abs2(soln[1])
|
|
||||||
## if abs2(soln[end-2]) > 1e-12
|
|
||||||
## if k_sq < 1e-12
|
|
||||||
## println(" center at infinity: z coordinates $(round(soln[end], digits = 6)) and $(round(soln[end-1], digits = 6))")
|
|
||||||
## else
|
|
||||||
## sum_sq = soln[4]^2 + soln[7]^2 + soln[end-2]^2 / k_sq
|
|
||||||
## println(" center on z axis: r² = $(round(1/k_sq, digits = 6)), x² + y² + h² = $(round(sum_sq, digits = 6))")
|
|
||||||
## end
|
|
||||||
## else
|
|
||||||
## sum_sq = sum(soln[[4, 7, 10]] .^ 2)
|
|
||||||
## println(" center at origin: r² = $(round(1/k_sq, digits = 6)); x² + y² + z² = $(round(sum_sq, digits = 6))")
|
|
||||||
## end
|
|
||||||
##end
|
|
||||||
|
|
||||||
# show a sample solution
|
# show a sample solution
|
||||||
function show_solution(ctx, vals)
|
function show_solution(ctx, vals)
|
||||||
|
Loading…
Reference in New Issue
Block a user