Study mutually tangent spheres with two fixed
This commit is contained in:
parent
e41bcc7e13
commit
291d5c8ff6
@ -186,19 +186,19 @@ function realize(ctx::Construction{T}) where T
|
||||
# add relations to center, orient, and scale the construction
|
||||
# [to do] the scaling constraint, as written, can be impossible to satisfy
|
||||
# when all of the spheres have to go through the origin
|
||||
if !isempty(ctx.points)
|
||||
append!(eqns, [sum(pt.coords[k] for pt in ctx.points) for k in 1:3])
|
||||
end
|
||||
if !isempty(ctx.spheres)
|
||||
append!(eqns, [sum(sph.coords[k] for sph in ctx.spheres) for k in 3:4])
|
||||
end
|
||||
n_elts = length(ctx.points) + length(ctx.spheres)
|
||||
if n_elts > 0
|
||||
push!(eqns, sum(elt.vec[2] for elt in Iterators.flatten((ctx.points, ctx.spheres))) - n_elts)
|
||||
end
|
||||
##if !isempty(ctx.points)
|
||||
## append!(eqns, [sum(pt.coords[k] for pt in ctx.points) for k in 1:3])
|
||||
##end
|
||||
##if !isempty(ctx.spheres)
|
||||
## append!(eqns, [sum(sph.coords[k] for sph in ctx.spheres) for k in 3:4])
|
||||
##end
|
||||
##n_elts = length(ctx.points) + length(ctx.spheres)
|
||||
##if n_elts > 0
|
||||
## push!(eqns, sum(elt.vec[2] for elt in Iterators.flatten((ctx.points, ctx.spheres))) - n_elts)
|
||||
##end
|
||||
|
||||
## [test] (Generic.Ideal(coordring, eqns), eqns)
|
||||
(nothing, eqns)
|
||||
(Generic.Ideal(coordring, eqns), eqns)
|
||||
## [test] (nothing, eqns)
|
||||
end
|
||||
|
||||
end
|
@ -39,15 +39,15 @@ CoeffType = Rational{Int64}
|
||||
##freedom = Engine.dimension(ideal_ab_s)
|
||||
##println("Two points on a sphere: $freedom degrees of freedom")
|
||||
|
||||
##spheres = [Engine.Sphere{CoeffType}() for _ in 1:3]
|
||||
##tangencies = [
|
||||
## Engine.AlignsWithBy{CoeffType}(
|
||||
## spheres[n],
|
||||
## spheres[mod1(n+1, length(spheres))],
|
||||
## CoeffType(-1//1)
|
||||
## )
|
||||
## for n in 1:3
|
||||
##]
|
||||
spheres = [Engine.Sphere{CoeffType}() for _ in 1:3]
|
||||
tangencies = [
|
||||
Engine.AlignsWithBy{CoeffType}(
|
||||
spheres[n],
|
||||
spheres[mod1(n+1, length(spheres))],
|
||||
CoeffType(-1)^n
|
||||
)
|
||||
for n in 1:3
|
||||
]
|
||||
##tangencies = [
|
||||
##Engine.LiesOn{CoeffType}(points[1], spheres[2]),
|
||||
##Engine.LiesOn{CoeffType}(points[1], spheres[3]),
|
||||
@ -56,34 +56,41 @@ CoeffType = Rational{Int64}
|
||||
##Engine.LiesOn{CoeffType}(points[3], spheres[1]),
|
||||
##Engine.LiesOn{CoeffType}(points[3], spheres[2])
|
||||
##]
|
||||
##ctx_tan_sph = Engine.Construction{CoeffType}(elements = Set(spheres), relations = Set(tangencies))
|
||||
##ideal_tan_sph, eqns_tan_sph = Engine.realize(ctx_tan_sph)
|
||||
##freedom = Engine.dimension(ideal_tan_sph)
|
||||
##println("Three mutually tangent spheres: $freedom degrees of freedom")
|
||||
ctx_tan_sph = Engine.Construction{CoeffType}(elements = Set(spheres), relations = Set(tangencies))
|
||||
ideal_tan_sph, eqns_tan_sph = Engine.realize(ctx_tan_sph)
|
||||
##small_eqns_tan_sph = eqns_tan_sph
|
||||
small_eqns_tan_sph = [
|
||||
eqns_tan_sph;
|
||||
spheres[2].coords - [1, 0, 0, 0, 1];
|
||||
spheres[3].coords - [1, 0, 0, 0, -1];
|
||||
]
|
||||
small_ideal_tan_sph = Generic.Ideal(base_ring(ideal_tan_sph), small_eqns_tan_sph)
|
||||
freedom = Engine.dimension(small_ideal_tan_sph)
|
||||
println("Three mutually tangent spheres, with two fixed: $freedom degrees of freedom")
|
||||
|
||||
points = [Engine.Point{CoeffType}() for _ in 1:3]
|
||||
spheres = [Engine.Sphere{CoeffType}() for _ in 1:2]
|
||||
ctx_joined = Engine.Construction{CoeffType}(
|
||||
elements = Set([points; spheres]),
|
||||
relations= Set([
|
||||
Engine.LiesOn{CoeffType}(pt, sph)
|
||||
for pt in points for sph in spheres
|
||||
])
|
||||
)
|
||||
ideal_joined, eqns_joined = Engine.realize(ctx_joined)
|
||||
freedom = Engine.dimension(ideal_joined)
|
||||
println("$(length(points)) points on $(length(spheres)) spheres: $freedom degrees of freedom")
|
||||
##points = [Engine.Point{CoeffType}() for _ in 1:3]
|
||||
##spheres = [Engine.Sphere{CoeffType}() for _ in 1:2]
|
||||
##ctx_joined = Engine.Construction{CoeffType}(
|
||||
## elements = Set([points; spheres]),
|
||||
## relations= Set([
|
||||
## Engine.LiesOn{CoeffType}(pt, sph)
|
||||
## for pt in points for sph in spheres
|
||||
## ])
|
||||
##)
|
||||
##ideal_joined, eqns_joined = Engine.realize(ctx_joined)
|
||||
##freedom = Engine.dimension(ideal_joined)
|
||||
##println("$(length(points)) points on $(length(spheres)) spheres: $freedom degrees of freedom")
|
||||
|
||||
# --- test rational cut ---
|
||||
|
||||
coordring = base_ring(ideal_joined)
|
||||
coordring = base_ring(small_ideal_tan_sph)
|
||||
vbls = Variable.(symbols(coordring))
|
||||
|
||||
# test a random witness set
|
||||
system = CompiledSystem(System(eqns_joined, variables = vbls))
|
||||
system = CompiledSystem(System(small_eqns_tan_sph, variables = vbls))
|
||||
norm2 = vec -> real(dot(conj.(vec), vec))
|
||||
Random.seed!(6071)
|
||||
n_planes = 3
|
||||
n_planes = 36
|
||||
samples = []
|
||||
for _ in 1:n_planes
|
||||
real_solns = solution.(Engine.Numerical.real_samples(system, freedom))
|
||||
@ -94,21 +101,21 @@ for _ in 1:n_planes
|
||||
end
|
||||
end
|
||||
println("$(length(samples)) sample solutions:")
|
||||
for soln in samples
|
||||
## display([vbls round.(soln, digits = 6)]) ## [verbose]
|
||||
k_sq = abs2(soln[1])
|
||||
if abs2(soln[end-2]) > 1e-12
|
||||
if k_sq < 1e-12
|
||||
println(" center at infinity: z coordinates $(round(soln[end], digits = 6)) and $(round(soln[end-1], digits = 6))")
|
||||
else
|
||||
sum_sq = soln[4]^2 + soln[7]^2 + soln[end-2]^2 / k_sq
|
||||
println(" center on z axis: r² = $(round(1/k_sq, digits = 6)), x² + y² + h² = $(round(sum_sq, digits = 6))")
|
||||
end
|
||||
else
|
||||
sum_sq = sum(soln[[4, 7, 10]] .^ 2)
|
||||
println(" center at origin: r² = $(round(1/k_sq, digits = 6)); x² + y² + z² = $(round(sum_sq, digits = 6))")
|
||||
end
|
||||
end
|
||||
##for soln in samples
|
||||
## ## display([vbls round.(soln, digits = 6)]) ## [verbose]
|
||||
## k_sq = abs2(soln[1])
|
||||
## if abs2(soln[end-2]) > 1e-12
|
||||
## if k_sq < 1e-12
|
||||
## println(" center at infinity: z coordinates $(round(soln[end], digits = 6)) and $(round(soln[end-1], digits = 6))")
|
||||
## else
|
||||
## sum_sq = soln[4]^2 + soln[7]^2 + soln[end-2]^2 / k_sq
|
||||
## println(" center on z axis: r² = $(round(1/k_sq, digits = 6)), x² + y² + h² = $(round(sum_sq, digits = 6))")
|
||||
## end
|
||||
## else
|
||||
## sum_sq = sum(soln[[4, 7, 10]] .^ 2)
|
||||
## println(" center at origin: r² = $(round(1/k_sq, digits = 6)); x² + y² + z² = $(round(sum_sq, digits = 6))")
|
||||
## end
|
||||
##end
|
||||
|
||||
# show a sample solution
|
||||
function show_solution(ctx, vals)
|
||||
|
Loading…
Reference in New Issue
Block a user