Scala benchmark: step rotation by multiplying
This makes the algorithm more consistent with the Rust benchmark.
This commit is contained in:
parent
3665351e12
commit
27ada6566b
@ -2,6 +2,7 @@ import com.raquo.laminar.api.L.{*, given}
|
||||
import narr.*
|
||||
import org.scalajs.dom
|
||||
import org.scalajs.dom.document
|
||||
import scala.collection.mutable.ArrayBuffer
|
||||
import scala.math.{cos, sin}
|
||||
import slash.matrix.Matrix
|
||||
import slash.matrix.decomposition.Eigen
|
||||
@ -38,36 +39,45 @@ object CircularLawApp:
|
||||
)
|
||||
ctx.fill()
|
||||
|
||||
def eigvalsRotated[N <: Int](A: Matrix[N, N], time: Double)(using ValueOf[N]): (NArray[Double], NArray[Double]) =
|
||||
// create transformation
|
||||
val maxFreq = 4
|
||||
val T = Matrix.identity[N, N]
|
||||
val dim: Int = valueOf[N]
|
||||
for n <- 0 to dim by 2 do
|
||||
val a = cos(math.Pi * time * (n % maxFreq))
|
||||
val b = sin(math.Pi * time * (n % maxFreq))
|
||||
T(n, n) = a
|
||||
T(n+1, n) = b
|
||||
T(n, n+1) = -b
|
||||
T(n+1, n+1) = a
|
||||
|
||||
// find eigenvalues
|
||||
val eigen = Eigen(T*A)
|
||||
def complexEigenvalues[N <: Int](mat: Matrix[N, N])(using ValueOf[N]): (NArray[Double], NArray[Double]) =
|
||||
val eigen = Eigen(mat)
|
||||
(
|
||||
eigen.realEigenvalues.asInstanceOf[NArray[Double]],
|
||||
eigen.imaginaryEigenvalues.asInstanceOf[NArray[Double]]
|
||||
)
|
||||
|
||||
def randEigvalSeries[N <: Int]()(using ValueOf[N]): (List[(NArray[Double], NArray[Double])], String) =
|
||||
val timeRes = 100
|
||||
val dim: Int = valueOf[N]
|
||||
def randEigvalSeries[N <: Int]()(using ValueOf[N]): (ArrayBuffer[(NArray[Double], NArray[Double])], String) =
|
||||
// start timing
|
||||
val startTime = System.currentTimeMillis()
|
||||
val A = new Matrix[N, N](
|
||||
|
||||
// initialize the random matrix step
|
||||
val dim: Int = valueOf[N]
|
||||
var randMat = new Matrix[N, N](
|
||||
NArray.tabulate(dim*dim)(k => (math.E*k*k) % 2 - 1)
|
||||
).times(math.sqrt(3d / dim))
|
||||
val series = List.tabulate(timeRes)(t => eigvalsRotated(A, t.toDouble / timeRes))
|
||||
|
||||
// initialize the rotation step
|
||||
val timeRes = 100
|
||||
val maxFreq = 4
|
||||
val rotStep = Matrix.identity[N, N]
|
||||
for n <- 0 to dim by 2 do
|
||||
val ang = math.Pi * (n % maxFreq) / timeRes
|
||||
val cos_ang = cos(ang)
|
||||
val sin_ang = sin(ang)
|
||||
rotStep(n, n) = cos_ang
|
||||
rotStep(n+1, n) = sin_ang
|
||||
rotStep(n, n+1) = -sin_ang
|
||||
rotStep(n+1, n+1) = cos_ang
|
||||
|
||||
// find the eigenvalues
|
||||
val eigvalSeries = ArrayBuffer(complexEigenvalues(randMat))
|
||||
for _ <- 1 to timeRes-1 do
|
||||
randMat = rotStep * randMat
|
||||
eigvalSeries += complexEigenvalues(randMat)
|
||||
|
||||
// finish timing
|
||||
val runTime = System.currentTimeMillis() - startTime
|
||||
(series, runTime.toString() + " ms")
|
||||
(eigvalSeries, runTime.toString() + " ms")
|
||||
|
||||
def main(args: Array[String]): Unit =
|
||||
ctx.fillStyle = "white"
|
||||
|
Loading…
Reference in New Issue
Block a user