Sketch backtracking Newton's method
This code is a mess, but I'm committing it to record a working state before I start trying to clean up.
This commit is contained in:
parent
3910b9f740
commit
25b09ebf92
@ -1,8 +1,10 @@
|
||||
module Engine
|
||||
|
||||
using LinearAlgebra
|
||||
using GenericLinearAlgebra
|
||||
using SparseArrays
|
||||
using Random
|
||||
using Optim
|
||||
|
||||
export rand_on_shell, Q, DescentHistory, realize_gram
|
||||
|
||||
@ -76,8 +78,11 @@ end
|
||||
struct DescentHistory{T}
|
||||
scaled_loss::Array{T}
|
||||
neg_grad::Array{Matrix{T}}
|
||||
base_step::Array{Matrix{T}}
|
||||
hess::Array{Hermitian{T, Matrix{T}}}
|
||||
slope::Array{T}
|
||||
stepsize::Array{T}
|
||||
used_grad::Array{Bool}
|
||||
backoff_steps::Array{Int64}
|
||||
last_line_L::Array{Matrix{T}}
|
||||
last_line_loss::Array{T}
|
||||
@ -85,13 +90,16 @@ struct DescentHistory{T}
|
||||
function DescentHistory{T}(
|
||||
scaled_loss = Array{T}(undef, 0),
|
||||
neg_grad = Array{Matrix{T}}(undef, 0),
|
||||
hess = Array{Hermitian{T, Matrix{T}}}(undef, 0),
|
||||
base_step = Array{Matrix{T}}(undef, 0),
|
||||
slope = Array{T}(undef, 0),
|
||||
stepsize = Array{T}(undef, 0),
|
||||
used_grad = Bool[],
|
||||
backoff_steps = Int64[],
|
||||
last_line_L = Array{Matrix{T}}(undef, 0),
|
||||
last_line_loss = Array{T}(undef, 0)
|
||||
) where T
|
||||
new(scaled_loss, neg_grad, slope, stepsize, backoff_steps, last_line_L, last_line_loss)
|
||||
new(scaled_loss, neg_grad, hess, base_step, slope, stepsize, used_grad, backoff_steps, last_line_L, last_line_loss)
|
||||
end
|
||||
end
|
||||
|
||||
@ -101,7 +109,7 @@ function realize_gram_gradient(
|
||||
gram::SparseMatrixCSC{T, <:Any},
|
||||
guess::Matrix{T};
|
||||
scaled_tol = 1e-30,
|
||||
target_improvement = 0.5,
|
||||
min_efficiency = 0.5,
|
||||
init_stepsize = 1.0,
|
||||
backoff = 0.9,
|
||||
max_descent_steps = 600,
|
||||
@ -152,7 +160,7 @@ function realize_gram_gradient(
|
||||
improvement = loss_last - loss
|
||||
push!(history.last_line_L, L)
|
||||
push!(history.last_line_loss, loss / scale_adjustment)
|
||||
if improvement >= target_improvement * stepsize * slope
|
||||
if improvement >= min_efficiency * stepsize * slope
|
||||
history.backoff_steps[end] = backoff_steps
|
||||
break
|
||||
end
|
||||
@ -201,7 +209,7 @@ function realize_gram_newton(
|
||||
scale_adjustment = sqrt(T(length(constrained)))
|
||||
tol = scale_adjustment * scaled_tol
|
||||
|
||||
# use newton's method
|
||||
# use Newton's method
|
||||
L = copy(guess)
|
||||
for step in 0:max_steps
|
||||
# evaluate the loss function
|
||||
@ -229,8 +237,10 @@ function realize_gram_newton(
|
||||
deriv_grad = 4*Q*(-basis_mat*Δ_proj + L*neg_dΔ_proj)
|
||||
hess[:, (k-1)*element_dim + j] = reshape(deriv_grad, total_dim)
|
||||
end
|
||||
hess = Hermitian(hess)
|
||||
push!(history.hess, hess)
|
||||
|
||||
# compute the newton step
|
||||
# compute the Newton step
|
||||
step = hess \ reshape(neg_grad, total_dim)
|
||||
L += rate * reshape(step, dims)
|
||||
end
|
||||
@ -239,4 +249,221 @@ function realize_gram_newton(
|
||||
L, history
|
||||
end
|
||||
|
||||
LinearAlgebra.eigen!(A::Symmetric{BigFloat, Matrix{BigFloat}}; sortby::Nothing) =
|
||||
eigen!(Hermitian(A))
|
||||
|
||||
function realize_gram_optim(
|
||||
gram::SparseMatrixCSC{T, <:Any},
|
||||
guess::Matrix{T}
|
||||
) where T <: Number
|
||||
# find the dimension of the search space
|
||||
dims = size(guess)
|
||||
element_dim, construction_dim = dims
|
||||
total_dim = element_dim * construction_dim
|
||||
|
||||
# list the constrained entries of the gram matrix
|
||||
J, K, _ = findnz(gram)
|
||||
constrained = zip(J, K)
|
||||
|
||||
# scale the loss function
|
||||
scale_adjustment = length(constrained)
|
||||
|
||||
function loss(L_vec)
|
||||
L = reshape(L_vec, dims)
|
||||
Δ_proj = proj_diff(gram, L'*Q*L)
|
||||
dot(Δ_proj, Δ_proj) / scale_adjustment
|
||||
end
|
||||
|
||||
function loss_grad!(storage, L_vec)
|
||||
L = reshape(L_vec, dims)
|
||||
Δ_proj = proj_diff(gram, L'*Q*L)
|
||||
storage .= reshape(-4*Q*L*Δ_proj, total_dim) / scale_adjustment
|
||||
end
|
||||
|
||||
function loss_hess!(storage, L_vec)
|
||||
L = reshape(L_vec, dims)
|
||||
Δ_proj = proj_diff(gram, L'*Q*L)
|
||||
indices = [(j, k) for k in 1:construction_dim for j in 1:element_dim]
|
||||
for (j, k) in indices
|
||||
basis_mat = basis_matrix(T, j, k, dims)
|
||||
neg_dΔ = basis_mat'*Q*L + L'*Q*basis_mat
|
||||
neg_dΔ_proj = proj_to_entries(neg_dΔ, constrained)
|
||||
deriv_grad = 4*Q*(-basis_mat*Δ_proj + L*neg_dΔ_proj) / scale_adjustment
|
||||
storage[:, (k-1)*element_dim + j] = reshape(deriv_grad, total_dim)
|
||||
end
|
||||
end
|
||||
|
||||
optimize(
|
||||
loss, loss_grad!, loss_hess!,
|
||||
reshape(guess, total_dim),
|
||||
NewtonTrustRegion()
|
||||
)
|
||||
end
|
||||
|
||||
# seek a matrix `L` for which `L'QL` matches the sparse matrix `gram` at every
|
||||
# explicit entry of `gram`. use gradient descent starting from `guess`
|
||||
function realize_gram(
|
||||
gram::SparseMatrixCSC{T, <:Any},
|
||||
guess::Matrix{T};
|
||||
scaled_tol = 1e-30,
|
||||
min_efficiency = 0.5,
|
||||
init_rate = 1.0,
|
||||
backoff = 0.9,
|
||||
reg_scale = 1.1,
|
||||
max_descent_steps = 200,
|
||||
max_backoff_steps = 110
|
||||
) where T <: Number
|
||||
# start history
|
||||
history = DescentHistory{T}()
|
||||
|
||||
# find the dimension of the search space
|
||||
dims = size(guess)
|
||||
element_dim, construction_dim = dims
|
||||
total_dim = element_dim * construction_dim
|
||||
|
||||
# list the constrained entries of the gram matrix
|
||||
J, K, _ = findnz(gram)
|
||||
constrained = zip(J, K)
|
||||
|
||||
# scale the tolerance
|
||||
scale_adjustment = sqrt(T(length(constrained)))
|
||||
tol = scale_adjustment * scaled_tol
|
||||
|
||||
# initialize variables
|
||||
grad_rate = init_rate
|
||||
L = copy(guess)
|
||||
|
||||
# use Newton's method with backtracking and gradient descent backup
|
||||
Δ_proj = proj_diff(gram, L'*Q*L)
|
||||
loss = dot(Δ_proj, Δ_proj)
|
||||
for step in 1:max_descent_steps
|
||||
# stop if the loss is tolerably low
|
||||
if loss < tol
|
||||
break
|
||||
end
|
||||
|
||||
# find the negative gradient of loss function
|
||||
neg_grad = 4*Q*L*Δ_proj
|
||||
|
||||
# find the negative Hessian of the loss function
|
||||
hess = Matrix{T}(undef, total_dim, total_dim)
|
||||
indices = [(j, k) for k in 1:construction_dim for j in 1:element_dim]
|
||||
for (j, k) in indices
|
||||
basis_mat = basis_matrix(T, j, k, dims)
|
||||
neg_dΔ = basis_mat'*Q*L + L'*Q*basis_mat
|
||||
neg_dΔ_proj = proj_to_entries(neg_dΔ, constrained)
|
||||
deriv_grad = 4*Q*(-basis_mat*Δ_proj + L*neg_dΔ_proj)
|
||||
hess[:, (k-1)*element_dim + j] = reshape(deriv_grad, total_dim)
|
||||
end
|
||||
hess = Hermitian(hess)
|
||||
push!(history.hess, hess)
|
||||
|
||||
# choose a base step: the Newton step if the Hessian is non-singular, and
|
||||
# the gradient descent direction otherwise
|
||||
#=
|
||||
sing = false
|
||||
base_step = try
|
||||
reshape(hess \ reshape(neg_grad, total_dim), dims)
|
||||
catch ex
|
||||
if isa(ex, SingularException)
|
||||
sing = true
|
||||
normalize(neg_grad)
|
||||
else
|
||||
throw(ex)
|
||||
end
|
||||
end
|
||||
=#
|
||||
#=
|
||||
if !sing
|
||||
rate = one(T)
|
||||
end
|
||||
=#
|
||||
#=
|
||||
if cond(Float64.(hess)) < 1e5
|
||||
sing = false
|
||||
base_step = reshape(hess \ reshape(neg_grad, total_dim), dims)
|
||||
else
|
||||
sing = true
|
||||
base_step = normalize(neg_grad)
|
||||
end
|
||||
=#
|
||||
#=
|
||||
if cond(Float64.(hess)) > 1e3
|
||||
sing = true
|
||||
hess += big"1e-5"*I
|
||||
else
|
||||
sing = false
|
||||
end
|
||||
base_step = reshape(hess \ reshape(neg_grad, total_dim), dims)
|
||||
=#
|
||||
min_eigval = minimum(eigvals(hess))
|
||||
if min_eigval < 0
|
||||
hess -= reg_scale * min_eigval * I
|
||||
end
|
||||
push!(history.used_grad, false)
|
||||
base_step = reshape(hess \ reshape(neg_grad, total_dim), dims)
|
||||
push!(history.base_step, base_step)
|
||||
#=
|
||||
push!(history.used_grad, sing)
|
||||
=#
|
||||
|
||||
# store the current position, loss, and slope
|
||||
L_last = L
|
||||
loss_last = loss
|
||||
push!(history.scaled_loss, loss / scale_adjustment)
|
||||
push!(history.neg_grad, neg_grad)
|
||||
push!(history.slope, norm(neg_grad))
|
||||
|
||||
# find a good step size using backtracking line search
|
||||
push!(history.stepsize, 0)
|
||||
push!(history.backoff_steps, max_backoff_steps)
|
||||
empty!(history.last_line_L)
|
||||
empty!(history.last_line_loss)
|
||||
rate = one(T)
|
||||
for backoff_steps in 0:max_backoff_steps
|
||||
history.stepsize[end] = rate
|
||||
|
||||
# try Newton step, but not on the first step. doing at least one step of
|
||||
# gradient descent seems to help prevent getting stuck, for some reason?
|
||||
if step > 0
|
||||
L = L_last + rate * base_step
|
||||
Δ_proj = proj_diff(gram, L'*Q*L)
|
||||
loss = dot(Δ_proj, Δ_proj)
|
||||
improvement = loss_last - loss
|
||||
push!(history.last_line_L, L)
|
||||
push!(history.last_line_loss, loss / scale_adjustment)
|
||||
if improvement >= min_efficiency * rate * dot(neg_grad, base_step)
|
||||
history.backoff_steps[end] = backoff_steps
|
||||
break
|
||||
end
|
||||
end
|
||||
|
||||
# try gradient descent step
|
||||
slope = norm(neg_grad)
|
||||
dir = neg_grad / slope
|
||||
L = L_last + rate * grad_rate * dir
|
||||
Δ_proj = proj_diff(gram, L'*Q*L)
|
||||
loss = dot(Δ_proj, Δ_proj)
|
||||
improvement = loss_last - loss
|
||||
if improvement >= min_efficiency * rate * grad_rate * slope
|
||||
grad_rate *= rate
|
||||
history.used_grad[end] = true
|
||||
history.backoff_steps[end] = backoff_steps
|
||||
break
|
||||
end
|
||||
|
||||
rate *= backoff
|
||||
end
|
||||
|
||||
# [DEBUG] if we've hit a wall, quit
|
||||
if history.backoff_steps[end] == max_backoff_steps
|
||||
return L_last, history
|
||||
end
|
||||
end
|
||||
|
||||
# return the factorization and its history
|
||||
push!(history.scaled_loss, loss / scale_adjustment)
|
||||
L, history
|
||||
end
|
||||
|
||||
end
|
@ -81,16 +81,23 @@ guess = hcat(
|
||||
=#
|
||||
|
||||
# complete the gram matrix using gradient descent followed by Newton's method
|
||||
#=
|
||||
L, history = Engine.realize_gram_gradient(gram, guess, scaled_tol = 0.01)
|
||||
L_pol, history_pol = Engine.realize_gram_newton(gram, L, rate = 0.3, scaled_tol = 1e-9)
|
||||
L_pol2, history_pol2 = Engine.realize_gram_newton(gram, L_pol)
|
||||
=#
|
||||
L, history = Engine.realize_gram(Float64.(gram), Float64.(guess))
|
||||
completed_gram = L'*Engine.Q*L
|
||||
println("Completed Gram matrix:\n")
|
||||
display(completed_gram)
|
||||
#=
|
||||
println(
|
||||
"\nSteps: ",
|
||||
size(history.scaled_loss, 1),
|
||||
" + ", size(history_pol.scaled_loss, 1),
|
||||
" + ", size(history_pol2.scaled_loss, 1)
|
||||
)
|
||||
println("Loss: ", history_pol2.scaled_loss[end], "\n")
|
||||
println("Loss: ", history_pol2.scaled_loss[end], "\n")
|
||||
=#
|
||||
println("\nSteps: ", size(history.scaled_loss, 1))
|
||||
println("Loss: ", history.scaled_loss[end], "\n")
|
@ -47,17 +47,25 @@ guess = hcat(
|
||||
Engine.rand_on_shell(fill(BigFloat(-1), 2))
|
||||
)
|
||||
|
||||
# complete the gram matrix using gradient descent followed by Newton's method
|
||||
# complete the gram matrix
|
||||
#=
|
||||
L, history = Engine.realize_gram_gradient(gram, guess, scaled_tol = 0.01)
|
||||
L_pol, history_pol = Engine.realize_gram_newton(gram, L)
|
||||
=#
|
||||
L, history = Engine.realize_gram(Float64.(gram), Float64.(guess))
|
||||
completed_gram = L'*Engine.Q*L
|
||||
println("Completed Gram matrix:\n")
|
||||
display(completed_gram)
|
||||
#=
|
||||
println("\nSteps: ", size(history.scaled_loss, 1), " + ", size(history_pol.scaled_loss, 1))
|
||||
println("Loss: ", history_pol.scaled_loss[end], "\n")
|
||||
=#
|
||||
println("\nSteps: ", size(history.scaled_loss, 1))
|
||||
println("Loss: ", history.scaled_loss[end], "\n")
|
||||
|
||||
# === algebraic check ===
|
||||
|
||||
#=
|
||||
R, gens = polynomial_ring(AbstractAlgebra.Rationals{BigInt}(), ["x", "t₁", "t₂", "t₃"])
|
||||
x = gens[1]
|
||||
t = gens[2:4]
|
||||
@ -85,3 +93,4 @@ x_constraint = 25//16 * to_univariate(S, evaluate(rank_constraints[1], [2], [ind
|
||||
t₂_constraint = 25//16 * to_univariate(S, evaluate(rank_constraints[3], [2], [indep_val]))
|
||||
x_vals = PolynomialRoots.roots(x_constraint.coeffs)
|
||||
t₂_vals = PolynomialRoots.roots(t₂_constraint.coeffs)
|
||||
=#
|
@ -33,8 +33,11 @@ guess = sqrt(1/BigFloat(3)) * BigFloat[
|
||||
1 1 1 1 1
|
||||
] + 0.2*Engine.rand_on_shell(fill(BigFloat(-1), 5))
|
||||
|
||||
# complete the gram matrix using Newton's method
|
||||
# complete the gram matrix
|
||||
#=
|
||||
L, history = Engine.realize_gram_newton(gram, guess)
|
||||
=#
|
||||
L, history = Engine.realize_gram(gram, guess, max_descent_steps = 50)
|
||||
completed_gram = L'*Engine.Q*L
|
||||
println("Completed Gram matrix:\n")
|
||||
display(completed_gram)
|
||||
|
Loading…
Reference in New Issue
Block a user