Implement frozen variables
This commit is contained in:
parent
b185fd4b83
commit
1ce609836b
@ -311,7 +311,8 @@ end
|
||||
# explicit entry of `gram`. use gradient descent starting from `guess`
|
||||
function realize_gram(
|
||||
gram::SparseMatrixCSC{T, <:Any},
|
||||
guess::Matrix{T};
|
||||
guess::Matrix{T},
|
||||
frozen = nothing;
|
||||
scaled_tol = 1e-30,
|
||||
min_efficiency = 0.5,
|
||||
init_rate = 1.0,
|
||||
@ -336,6 +337,15 @@ function realize_gram(
|
||||
scale_adjustment = sqrt(T(length(constrained)))
|
||||
tol = scale_adjustment * scaled_tol
|
||||
|
||||
# list the un-frozen indices
|
||||
has_frozen = !isnothing(frozen)
|
||||
if has_frozen
|
||||
is_unfrozen = fill(true, size(guess))
|
||||
is_unfrozen[frozen] .= false
|
||||
unfrozen = findall(is_unfrozen)
|
||||
unfrozen_stacked = reshape(is_unfrozen, total_dim)
|
||||
end
|
||||
|
||||
# initialize variables
|
||||
grad_rate = init_rate
|
||||
L = copy(guess)
|
||||
@ -371,7 +381,23 @@ function realize_gram(
|
||||
if min_eigval <= 0
|
||||
hess -= reg_scale * min_eigval * I
|
||||
end
|
||||
base_step = reshape(hess \ reshape(neg_grad, total_dim), dims)
|
||||
|
||||
# compute the Newton step
|
||||
neg_grad_stacked = reshape(neg_grad, total_dim)
|
||||
if has_frozen
|
||||
hess = hess[unfrozen_stacked, unfrozen_stacked]
|
||||
neg_grad_compressed = neg_grad_stacked[unfrozen_stacked]
|
||||
else
|
||||
neg_grad_compressed = neg_grad_stacked
|
||||
end
|
||||
base_step_compressed = hess \ neg_grad_compressed
|
||||
if has_frozen
|
||||
base_step_stacked = zeros(total_dim)
|
||||
base_step_stacked[unfrozen_stacked] .= base_step_compressed
|
||||
else
|
||||
base_step_stacked = base_step_compressed
|
||||
end
|
||||
base_step = reshape(base_step_stacked, dims)
|
||||
push!(history.base_step, base_step)
|
||||
|
||||
# store the current position, loss, and slope
|
||||
|
@ -66,6 +66,7 @@ guess = hcat(
|
||||
Engine.sphere(BigFloat[cos(pi/3), sin(pi/3), 0], BigFloat(1//5)),
|
||||
BigFloat[0, 0, 0, 1, 1]
|
||||
)
|
||||
frozen = [CartesianIndex(j, 9) for j in 4:5]
|
||||
#=
|
||||
guess = hcat(
|
||||
Engine.plane(BigFloat[0, 0, 1], BigFloat(0)),
|
||||
@ -86,7 +87,7 @@ L, history = Engine.realize_gram_gradient(gram, guess, scaled_tol = 0.01)
|
||||
L_pol, history_pol = Engine.realize_gram_newton(gram, L, rate = 0.3, scaled_tol = 1e-9)
|
||||
L_pol2, history_pol2 = Engine.realize_gram_newton(gram, L_pol)
|
||||
=#
|
||||
L, success, history = Engine.realize_gram(gram, guess)
|
||||
L, success, history = Engine.realize_gram(gram, guess, frozen)
|
||||
completed_gram = L'*Engine.Q*L
|
||||
println("Completed Gram matrix:\n")
|
||||
display(completed_gram)
|
||||
|
Loading…
Reference in New Issue
Block a user