Try out the Gram matrix approach
This commit is contained in:
parent
3170a933e4
commit
16826cf07c
30
engine-proto/gram-test/gram-test.jl
Normal file
30
engine-proto/gram-test/gram-test.jl
Normal file
@ -0,0 +1,30 @@
|
||||
using LinearAlgebra
|
||||
using AbstractAlgebra
|
||||
|
||||
F, (a, b, c) = rational_function_field(Generic.Rationals{BigInt}(), ["a", "b", "c"])
|
||||
M = matrix_space(F, 5, 5)
|
||||
|
||||
# three mutually tangent spheres which are all perpendicular to the x, y plane
|
||||
gram = M(F.([
|
||||
-1 0 0 0 0;
|
||||
0 -1 a b c;
|
||||
0 a -1 1 1;
|
||||
0 b 1 -1 1;
|
||||
0 c 1 1 -1;
|
||||
]))
|
||||
|
||||
r, p, L, U = lu(gram)
|
||||
solution = transpose(p * L)
|
||||
mform = U * inv(transpose(L))
|
||||
|
||||
concrete = [evaluate(entry, [0, 1, -3//4]) for entry in solution]
|
||||
|
||||
std_basis = [
|
||||
0 0 0 1 1;
|
||||
0 0 0 1 -1;
|
||||
1 0 0 0 0;
|
||||
0 1 0 0 0;
|
||||
0 0 1 0 0
|
||||
]
|
||||
std_solution = M(F.(std_basis)) * solution
|
||||
std_concrete = std_basis * concrete
|
27
engine-proto/gram-test/gram-test.sage
Normal file
27
engine-proto/gram-test/gram-test.sage
Normal file
@ -0,0 +1,27 @@
|
||||
F = QQ['a', 'b', 'c'].fraction_field()
|
||||
a, b, c = F.gens()
|
||||
|
||||
# three mutually tangent spheres which are all perpendicular to the x, y plane
|
||||
gram = matrix([
|
||||
[-1, 0, 0, 0, 0],
|
||||
[0, -1, a, b, c],
|
||||
[0, a, -1, 1, 1],
|
||||
[0, b, 1, -1, 1],
|
||||
[0, c, 1, 1, -1]
|
||||
])
|
||||
|
||||
P, L, U = gram.LU()
|
||||
solution = (P * L).transpose()
|
||||
mform = U * L.transpose().inverse()
|
||||
|
||||
concrete = solution.subs({a: 0, b: 1, c: -3/4})
|
||||
|
||||
std_basis = matrix([
|
||||
[0, 0, 0, 1, 1],
|
||||
[0, 0, 0, 1, -1],
|
||||
[1, 0, 0, 0, 0],
|
||||
[0, 1, 0, 0, 0],
|
||||
[0, 0, 1, 0, 0]
|
||||
])
|
||||
std_solution = std_basis * solution
|
||||
std_concrete = std_basis * concrete
|
Loading…
Reference in New Issue
Block a user