Rust benchmark: tidy up a bit
This commit is contained in:
parent
0b3fe689cd
commit
14fb6d01f0
@ -1,10 +1,87 @@
|
||||
use nalgebra::{*, allocator::Allocator};
|
||||
use std::f64::consts::{PI, E};
|
||||
use web_sys::console;
|
||||
/*use std::ops::Sub;*/
|
||||
/*use typenum::{B1, UInt, UTerm};*/
|
||||
|
||||
/*pub fn eigvals_rotated<N>(A: SMatrix<f64, N, N>, time: f64): complex_eigenvalues(&self) -> OVector<NumComplex<T>, D>*/
|
||||
/* dynamic matrices */
|
||||
pub fn rand_eigval_series<N>(time_res: usize) -> Vec<OVector<Complex<f64>, Dyn>>
|
||||
where
|
||||
N: ToTypenum + DimName + DimSub<U1>,
|
||||
DefaultAllocator:
|
||||
Allocator<N> +
|
||||
Allocator<N, N> +
|
||||
Allocator<<N as DimSub<U1>>::Output> +
|
||||
Allocator<N, <N as DimSub<U1>>::Output>
|
||||
{
|
||||
// initialize the random matrix
|
||||
let dim = N::try_to_usize().unwrap();
|
||||
let mut rand_mat = DMatrix::<f64>::from_fn(dim, dim, |j, k| {
|
||||
let n = j*dim + k;
|
||||
E*((n*n) as f64) % 2.0 - 1.0
|
||||
}) * (3.0 / (dim as f64)).sqrt();
|
||||
|
||||
// initialize the rotation step
|
||||
let mut rot_step = DMatrix::<f64>::identity(dim, dim);
|
||||
let max_freq = 4;
|
||||
for n in (0..dim).step_by(2) {
|
||||
let ang = PI * ((n % max_freq) as f64) / (time_res as f64);
|
||||
let ang_cos = ang.cos();
|
||||
let ang_sin = ang.sin();
|
||||
rot_step[(n, n)] = ang_cos;
|
||||
rot_step[(n+1, n)] = ang_sin;
|
||||
rot_step[(n, n+1)] = -ang_sin;
|
||||
rot_step[(n+1, n+1)] = ang_cos;
|
||||
}
|
||||
|
||||
// find the eigenvalues
|
||||
let mut eigval_series = Vec::<OVector<Complex<f64>, Dyn>>::with_capacity(time_res);
|
||||
eigval_series.push(rand_mat.complex_eigenvalues());
|
||||
for _ in 1..time_res {
|
||||
rand_mat = &rot_step * rand_mat;
|
||||
eigval_series.push(rand_mat.complex_eigenvalues());
|
||||
}
|
||||
eigval_series
|
||||
}
|
||||
|
||||
/* dynamic single float matrices */
|
||||
/*pub fn rand_eigval_series<N>(time_res: usize) -> Vec<OVector<Complex<f32>, Dyn>>
|
||||
where
|
||||
N: ToTypenum + DimName + DimSub<U1>,
|
||||
DefaultAllocator:
|
||||
Allocator<N> +
|
||||
Allocator<N, N> +
|
||||
Allocator<<N as DimSub<U1>>::Output> +
|
||||
Allocator<N, <N as DimSub<U1>>::Output>
|
||||
{
|
||||
// initialize the random matrix
|
||||
let dim = N::try_to_usize().unwrap();
|
||||
let mut rand_mat = DMatrix::<f32>::from_fn(dim, dim, |j, k| {
|
||||
let n = j*dim + k;
|
||||
(E as f32)*((n*n) as f32) % 2.0_f32 - 1.0_f32
|
||||
}) * (3.0_f32 / (dim as f32)).sqrt();
|
||||
|
||||
// initialize the rotation step
|
||||
let mut rot_step = DMatrix::<f32>::identity(dim, dim);
|
||||
let max_freq = 4;
|
||||
for n in (0..dim).step_by(2) {
|
||||
let ang = (PI as f32) * ((n % max_freq) as f32) / (time_res as f32);
|
||||
let ang_cos = ang.cos();
|
||||
let ang_sin = ang.sin();
|
||||
rot_step[(n, n)] = ang_cos;
|
||||
rot_step[(n+1, n)] = ang_sin;
|
||||
rot_step[(n, n+1)] = -ang_sin;
|
||||
rot_step[(n+1, n+1)] = ang_cos;
|
||||
}
|
||||
|
||||
// find the eigenvalues
|
||||
let mut eigval_series = Vec::<OVector<Complex<f32>, Dyn>>::with_capacity(time_res);
|
||||
eigval_series.push(rand_mat.complex_eigenvalues());
|
||||
for _ in 1..time_res {
|
||||
rand_mat = &rot_step * rand_mat;
|
||||
eigval_series.push(rand_mat.complex_eigenvalues());
|
||||
}
|
||||
eigval_series
|
||||
}*/
|
||||
|
||||
/* static matrices. should only be used when the dimension is really small */
|
||||
/*pub fn rand_eigval_series<N>(time_res: usize) -> Vec<OVector<Complex<f64>, N>>
|
||||
@ -18,7 +95,6 @@ use web_sys::console;
|
||||
{
|
||||
// initialize the random matrix
|
||||
let dim = N::try_to_usize().unwrap();
|
||||
console::log_1(&format!("dimension {dim}").into());
|
||||
let mut rand_mat = OMatrix::<f64, N, N>::from_fn(|j, k| {
|
||||
let n = j*dim + k;
|
||||
E*((n*n) as f64) % 2.0 - 1.0
|
||||
@ -40,9 +116,7 @@ use web_sys::console;
|
||||
|
||||
// find the eigenvalues
|
||||
let mut eigval_series = Vec::<OVector<Complex<f64>, N>>::with_capacity(time_res);
|
||||
console::log_1(&"before engine eigenvalues".into());
|
||||
eigval_series.push(rand_mat.complex_eigenvalues());
|
||||
console::log_1(&"after engine eigenvalues".into());
|
||||
for _ in 1..time_res {
|
||||
rand_mat = &rot_step * rand_mat;
|
||||
eigval_series.push(rand_mat.complex_eigenvalues());
|
||||
@ -88,89 +162,3 @@ use web_sys::console;
|
||||
}
|
||||
eigvals
|
||||
}*/
|
||||
|
||||
/* dynamic matrices */
|
||||
pub fn rand_eigval_series<N>(time_res: usize) -> Vec<OVector<Complex<f64>, Dyn>>
|
||||
where
|
||||
N: ToTypenum + DimName + DimSub<U1>,
|
||||
DefaultAllocator:
|
||||
Allocator<N> +
|
||||
Allocator<N, N> +
|
||||
Allocator<<N as DimSub<U1>>::Output> +
|
||||
Allocator<N, <N as DimSub<U1>>::Output>
|
||||
{
|
||||
// initialize the random matrix
|
||||
let dim = N::try_to_usize().unwrap();
|
||||
console::log_1(&format!("dimension {dim}").into());
|
||||
let mut rand_mat = DMatrix::<f64>::from_fn(dim, dim, |j, k| {
|
||||
let n = j*dim + k;
|
||||
E*((n*n) as f64) % 2.0 - 1.0
|
||||
}) * (3.0 / (dim as f64)).sqrt();
|
||||
|
||||
// initialize the rotation step
|
||||
let mut rot_step = DMatrix::<f64>::identity(dim, dim);
|
||||
let max_freq = 4;
|
||||
for n in (0..dim).step_by(2) {
|
||||
let ang = PI * ((n % max_freq) as f64) / (time_res as f64);
|
||||
let ang_cos = ang.cos();
|
||||
let ang_sin = ang.sin();
|
||||
rot_step[(n, n)] = ang_cos;
|
||||
rot_step[(n+1, n)] = ang_sin;
|
||||
rot_step[(n, n+1)] = -ang_sin;
|
||||
rot_step[(n+1, n+1)] = ang_cos;
|
||||
}
|
||||
|
||||
// find the eigenvalues
|
||||
let mut eigval_series = Vec::<OVector<Complex<f64>, Dyn>>::with_capacity(time_res);
|
||||
console::log_1(&"before engine eigenvalues".into());
|
||||
eigval_series.push(rand_mat.complex_eigenvalues());
|
||||
console::log_1(&"after engine eigenvalues".into());
|
||||
for _ in 1..time_res {
|
||||
rand_mat = &rot_step * rand_mat;
|
||||
eigval_series.push(rand_mat.complex_eigenvalues());
|
||||
}
|
||||
eigval_series
|
||||
}
|
||||
|
||||
/* dynamic single float matrices */
|
||||
/*pub fn rand_eigval_series<N>(time_res: usize) -> Vec<OVector<Complex<f32>, Dyn>>
|
||||
where
|
||||
N: ToTypenum + DimName + DimSub<U1>,
|
||||
DefaultAllocator:
|
||||
Allocator<N> +
|
||||
Allocator<N, N> +
|
||||
Allocator<<N as DimSub<U1>>::Output> +
|
||||
Allocator<N, <N as DimSub<U1>>::Output>
|
||||
{
|
||||
// initialize the random matrix
|
||||
let dim = N::try_to_usize().unwrap();
|
||||
console::log_1(&format!("dimension {dim}").into());
|
||||
let mut rand_mat = DMatrix::<f32>::from_fn(dim, dim, |j, k| {
|
||||
let n = j*dim + k;
|
||||
(E as f32)*((n*n) as f32) % 2.0_f32 - 1.0_f32
|
||||
}) * (3.0_f32 / (dim as f32)).sqrt();
|
||||
|
||||
// initialize the rotation step
|
||||
let mut rot_step = DMatrix::<f32>::identity(dim, dim);
|
||||
let max_freq = 4;
|
||||
for n in (0..dim).step_by(2) {
|
||||
let ang = (PI as f32) * ((n % max_freq) as f32) / (time_res as f32);
|
||||
let ang_cos = ang.cos();
|
||||
let ang_sin = ang.sin();
|
||||
rot_step[(n, n)] = ang_cos;
|
||||
rot_step[(n+1, n)] = ang_sin;
|
||||
rot_step[(n, n+1)] = -ang_sin;
|
||||
rot_step[(n+1, n+1)] = ang_cos;
|
||||
}
|
||||
|
||||
// find the eigenvalues
|
||||
let mut eigval_series = Vec::<OVector<Complex<f32>, Dyn>>::with_capacity(time_res);
|
||||
console::log_1(&"before engine eigenvalues".into());
|
||||
eigval_series.push(rand_mat.complex_eigenvalues());
|
||||
console::log_1(&"after engine eigenvalues".into());
|
||||
for _ in 1..time_res {
|
||||
rand_mat = &rot_step * rand_mat;
|
||||
eigval_series.push(rand_mat.complex_eigenvalues());
|
||||
}
|
||||
eigval_series
|
||||
}*/
|
@ -1,7 +1,7 @@
|
||||
use nalgebra::*;
|
||||
use std::f64::consts::PI as PI;
|
||||
use sycamore::{prelude::*, rt::{JsCast, JsValue}};
|
||||
use web_sys::{console, window};
|
||||
use web_sys::window;
|
||||
|
||||
mod engine;
|
||||
|
||||
@ -10,14 +10,6 @@ fn main() {
|
||||
#[cfg(feature = "console_error_panic_hook")]
|
||||
console_error_panic_hook::set_once();
|
||||
|
||||
/*console::log_1(&"before test schur 60".into());*/
|
||||
/*let test_rand_mat = OMatrix::<f64, U60, U60>::identity();*/
|
||||
/*let test_rot_step = OMatrix::<f64, U56, U56>::identity();*/
|
||||
/*let test_schur = test_rand_mat.schur();
|
||||
console::log_1(&format!("after test schur").into());
|
||||
let test_eigvals = test_schur.complex_eigenvalues();
|
||||
console::log_1(&format!("after test eigenvalues").into());*/
|
||||
|
||||
sycamore::render(|| {
|
||||
let time_res: usize = 100;
|
||||
let time_step = create_signal(0.0);
|
||||
|
Loading…
Reference in New Issue
Block a user