Rust benchmark: tidy up a bit
This commit is contained in:
parent
0b3fe689cd
commit
14fb6d01f0
@ -1,10 +1,87 @@
|
|||||||
use nalgebra::{*, allocator::Allocator};
|
use nalgebra::{*, allocator::Allocator};
|
||||||
use std::f64::consts::{PI, E};
|
use std::f64::consts::{PI, E};
|
||||||
use web_sys::console;
|
|
||||||
/*use std::ops::Sub;*/
|
/*use std::ops::Sub;*/
|
||||||
/*use typenum::{B1, UInt, UTerm};*/
|
/*use typenum::{B1, UInt, UTerm};*/
|
||||||
|
|
||||||
/*pub fn eigvals_rotated<N>(A: SMatrix<f64, N, N>, time: f64): complex_eigenvalues(&self) -> OVector<NumComplex<T>, D>*/
|
/* dynamic matrices */
|
||||||
|
pub fn rand_eigval_series<N>(time_res: usize) -> Vec<OVector<Complex<f64>, Dyn>>
|
||||||
|
where
|
||||||
|
N: ToTypenum + DimName + DimSub<U1>,
|
||||||
|
DefaultAllocator:
|
||||||
|
Allocator<N> +
|
||||||
|
Allocator<N, N> +
|
||||||
|
Allocator<<N as DimSub<U1>>::Output> +
|
||||||
|
Allocator<N, <N as DimSub<U1>>::Output>
|
||||||
|
{
|
||||||
|
// initialize the random matrix
|
||||||
|
let dim = N::try_to_usize().unwrap();
|
||||||
|
let mut rand_mat = DMatrix::<f64>::from_fn(dim, dim, |j, k| {
|
||||||
|
let n = j*dim + k;
|
||||||
|
E*((n*n) as f64) % 2.0 - 1.0
|
||||||
|
}) * (3.0 / (dim as f64)).sqrt();
|
||||||
|
|
||||||
|
// initialize the rotation step
|
||||||
|
let mut rot_step = DMatrix::<f64>::identity(dim, dim);
|
||||||
|
let max_freq = 4;
|
||||||
|
for n in (0..dim).step_by(2) {
|
||||||
|
let ang = PI * ((n % max_freq) as f64) / (time_res as f64);
|
||||||
|
let ang_cos = ang.cos();
|
||||||
|
let ang_sin = ang.sin();
|
||||||
|
rot_step[(n, n)] = ang_cos;
|
||||||
|
rot_step[(n+1, n)] = ang_sin;
|
||||||
|
rot_step[(n, n+1)] = -ang_sin;
|
||||||
|
rot_step[(n+1, n+1)] = ang_cos;
|
||||||
|
}
|
||||||
|
|
||||||
|
// find the eigenvalues
|
||||||
|
let mut eigval_series = Vec::<OVector<Complex<f64>, Dyn>>::with_capacity(time_res);
|
||||||
|
eigval_series.push(rand_mat.complex_eigenvalues());
|
||||||
|
for _ in 1..time_res {
|
||||||
|
rand_mat = &rot_step * rand_mat;
|
||||||
|
eigval_series.push(rand_mat.complex_eigenvalues());
|
||||||
|
}
|
||||||
|
eigval_series
|
||||||
|
}
|
||||||
|
|
||||||
|
/* dynamic single float matrices */
|
||||||
|
/*pub fn rand_eigval_series<N>(time_res: usize) -> Vec<OVector<Complex<f32>, Dyn>>
|
||||||
|
where
|
||||||
|
N: ToTypenum + DimName + DimSub<U1>,
|
||||||
|
DefaultAllocator:
|
||||||
|
Allocator<N> +
|
||||||
|
Allocator<N, N> +
|
||||||
|
Allocator<<N as DimSub<U1>>::Output> +
|
||||||
|
Allocator<N, <N as DimSub<U1>>::Output>
|
||||||
|
{
|
||||||
|
// initialize the random matrix
|
||||||
|
let dim = N::try_to_usize().unwrap();
|
||||||
|
let mut rand_mat = DMatrix::<f32>::from_fn(dim, dim, |j, k| {
|
||||||
|
let n = j*dim + k;
|
||||||
|
(E as f32)*((n*n) as f32) % 2.0_f32 - 1.0_f32
|
||||||
|
}) * (3.0_f32 / (dim as f32)).sqrt();
|
||||||
|
|
||||||
|
// initialize the rotation step
|
||||||
|
let mut rot_step = DMatrix::<f32>::identity(dim, dim);
|
||||||
|
let max_freq = 4;
|
||||||
|
for n in (0..dim).step_by(2) {
|
||||||
|
let ang = (PI as f32) * ((n % max_freq) as f32) / (time_res as f32);
|
||||||
|
let ang_cos = ang.cos();
|
||||||
|
let ang_sin = ang.sin();
|
||||||
|
rot_step[(n, n)] = ang_cos;
|
||||||
|
rot_step[(n+1, n)] = ang_sin;
|
||||||
|
rot_step[(n, n+1)] = -ang_sin;
|
||||||
|
rot_step[(n+1, n+1)] = ang_cos;
|
||||||
|
}
|
||||||
|
|
||||||
|
// find the eigenvalues
|
||||||
|
let mut eigval_series = Vec::<OVector<Complex<f32>, Dyn>>::with_capacity(time_res);
|
||||||
|
eigval_series.push(rand_mat.complex_eigenvalues());
|
||||||
|
for _ in 1..time_res {
|
||||||
|
rand_mat = &rot_step * rand_mat;
|
||||||
|
eigval_series.push(rand_mat.complex_eigenvalues());
|
||||||
|
}
|
||||||
|
eigval_series
|
||||||
|
}*/
|
||||||
|
|
||||||
/* static matrices. should only be used when the dimension is really small */
|
/* static matrices. should only be used when the dimension is really small */
|
||||||
/*pub fn rand_eigval_series<N>(time_res: usize) -> Vec<OVector<Complex<f64>, N>>
|
/*pub fn rand_eigval_series<N>(time_res: usize) -> Vec<OVector<Complex<f64>, N>>
|
||||||
@ -18,7 +95,6 @@ use web_sys::console;
|
|||||||
{
|
{
|
||||||
// initialize the random matrix
|
// initialize the random matrix
|
||||||
let dim = N::try_to_usize().unwrap();
|
let dim = N::try_to_usize().unwrap();
|
||||||
console::log_1(&format!("dimension {dim}").into());
|
|
||||||
let mut rand_mat = OMatrix::<f64, N, N>::from_fn(|j, k| {
|
let mut rand_mat = OMatrix::<f64, N, N>::from_fn(|j, k| {
|
||||||
let n = j*dim + k;
|
let n = j*dim + k;
|
||||||
E*((n*n) as f64) % 2.0 - 1.0
|
E*((n*n) as f64) % 2.0 - 1.0
|
||||||
@ -40,9 +116,7 @@ use web_sys::console;
|
|||||||
|
|
||||||
// find the eigenvalues
|
// find the eigenvalues
|
||||||
let mut eigval_series = Vec::<OVector<Complex<f64>, N>>::with_capacity(time_res);
|
let mut eigval_series = Vec::<OVector<Complex<f64>, N>>::with_capacity(time_res);
|
||||||
console::log_1(&"before engine eigenvalues".into());
|
|
||||||
eigval_series.push(rand_mat.complex_eigenvalues());
|
eigval_series.push(rand_mat.complex_eigenvalues());
|
||||||
console::log_1(&"after engine eigenvalues".into());
|
|
||||||
for _ in 1..time_res {
|
for _ in 1..time_res {
|
||||||
rand_mat = &rot_step * rand_mat;
|
rand_mat = &rot_step * rand_mat;
|
||||||
eigval_series.push(rand_mat.complex_eigenvalues());
|
eigval_series.push(rand_mat.complex_eigenvalues());
|
||||||
@ -87,90 +161,4 @@ use web_sys::console;
|
|||||||
eigvals[t] = rand_mat.complex_eigenvalues();
|
eigvals[t] = rand_mat.complex_eigenvalues();
|
||||||
}
|
}
|
||||||
eigvals
|
eigvals
|
||||||
}*/
|
|
||||||
|
|
||||||
/* dynamic matrices */
|
|
||||||
pub fn rand_eigval_series<N>(time_res: usize) -> Vec<OVector<Complex<f64>, Dyn>>
|
|
||||||
where
|
|
||||||
N: ToTypenum + DimName + DimSub<U1>,
|
|
||||||
DefaultAllocator:
|
|
||||||
Allocator<N> +
|
|
||||||
Allocator<N, N> +
|
|
||||||
Allocator<<N as DimSub<U1>>::Output> +
|
|
||||||
Allocator<N, <N as DimSub<U1>>::Output>
|
|
||||||
{
|
|
||||||
// initialize the random matrix
|
|
||||||
let dim = N::try_to_usize().unwrap();
|
|
||||||
console::log_1(&format!("dimension {dim}").into());
|
|
||||||
let mut rand_mat = DMatrix::<f64>::from_fn(dim, dim, |j, k| {
|
|
||||||
let n = j*dim + k;
|
|
||||||
E*((n*n) as f64) % 2.0 - 1.0
|
|
||||||
}) * (3.0 / (dim as f64)).sqrt();
|
|
||||||
|
|
||||||
// initialize the rotation step
|
|
||||||
let mut rot_step = DMatrix::<f64>::identity(dim, dim);
|
|
||||||
let max_freq = 4;
|
|
||||||
for n in (0..dim).step_by(2) {
|
|
||||||
let ang = PI * ((n % max_freq) as f64) / (time_res as f64);
|
|
||||||
let ang_cos = ang.cos();
|
|
||||||
let ang_sin = ang.sin();
|
|
||||||
rot_step[(n, n)] = ang_cos;
|
|
||||||
rot_step[(n+1, n)] = ang_sin;
|
|
||||||
rot_step[(n, n+1)] = -ang_sin;
|
|
||||||
rot_step[(n+1, n+1)] = ang_cos;
|
|
||||||
}
|
|
||||||
|
|
||||||
// find the eigenvalues
|
|
||||||
let mut eigval_series = Vec::<OVector<Complex<f64>, Dyn>>::with_capacity(time_res);
|
|
||||||
console::log_1(&"before engine eigenvalues".into());
|
|
||||||
eigval_series.push(rand_mat.complex_eigenvalues());
|
|
||||||
console::log_1(&"after engine eigenvalues".into());
|
|
||||||
for _ in 1..time_res {
|
|
||||||
rand_mat = &rot_step * rand_mat;
|
|
||||||
eigval_series.push(rand_mat.complex_eigenvalues());
|
|
||||||
}
|
|
||||||
eigval_series
|
|
||||||
}
|
|
||||||
|
|
||||||
/* dynamic single float matrices */
|
|
||||||
/*pub fn rand_eigval_series<N>(time_res: usize) -> Vec<OVector<Complex<f32>, Dyn>>
|
|
||||||
where
|
|
||||||
N: ToTypenum + DimName + DimSub<U1>,
|
|
||||||
DefaultAllocator:
|
|
||||||
Allocator<N> +
|
|
||||||
Allocator<N, N> +
|
|
||||||
Allocator<<N as DimSub<U1>>::Output> +
|
|
||||||
Allocator<N, <N as DimSub<U1>>::Output>
|
|
||||||
{
|
|
||||||
// initialize the random matrix
|
|
||||||
let dim = N::try_to_usize().unwrap();
|
|
||||||
console::log_1(&format!("dimension {dim}").into());
|
|
||||||
let mut rand_mat = DMatrix::<f32>::from_fn(dim, dim, |j, k| {
|
|
||||||
let n = j*dim + k;
|
|
||||||
(E as f32)*((n*n) as f32) % 2.0_f32 - 1.0_f32
|
|
||||||
}) * (3.0_f32 / (dim as f32)).sqrt();
|
|
||||||
|
|
||||||
// initialize the rotation step
|
|
||||||
let mut rot_step = DMatrix::<f32>::identity(dim, dim);
|
|
||||||
let max_freq = 4;
|
|
||||||
for n in (0..dim).step_by(2) {
|
|
||||||
let ang = (PI as f32) * ((n % max_freq) as f32) / (time_res as f32);
|
|
||||||
let ang_cos = ang.cos();
|
|
||||||
let ang_sin = ang.sin();
|
|
||||||
rot_step[(n, n)] = ang_cos;
|
|
||||||
rot_step[(n+1, n)] = ang_sin;
|
|
||||||
rot_step[(n, n+1)] = -ang_sin;
|
|
||||||
rot_step[(n+1, n+1)] = ang_cos;
|
|
||||||
}
|
|
||||||
|
|
||||||
// find the eigenvalues
|
|
||||||
let mut eigval_series = Vec::<OVector<Complex<f32>, Dyn>>::with_capacity(time_res);
|
|
||||||
console::log_1(&"before engine eigenvalues".into());
|
|
||||||
eigval_series.push(rand_mat.complex_eigenvalues());
|
|
||||||
console::log_1(&"after engine eigenvalues".into());
|
|
||||||
for _ in 1..time_res {
|
|
||||||
rand_mat = &rot_step * rand_mat;
|
|
||||||
eigval_series.push(rand_mat.complex_eigenvalues());
|
|
||||||
}
|
|
||||||
eigval_series
|
|
||||||
}*/
|
}*/
|
@ -1,7 +1,7 @@
|
|||||||
use nalgebra::*;
|
use nalgebra::*;
|
||||||
use std::f64::consts::PI as PI;
|
use std::f64::consts::PI as PI;
|
||||||
use sycamore::{prelude::*, rt::{JsCast, JsValue}};
|
use sycamore::{prelude::*, rt::{JsCast, JsValue}};
|
||||||
use web_sys::{console, window};
|
use web_sys::window;
|
||||||
|
|
||||||
mod engine;
|
mod engine;
|
||||||
|
|
||||||
@ -10,14 +10,6 @@ fn main() {
|
|||||||
#[cfg(feature = "console_error_panic_hook")]
|
#[cfg(feature = "console_error_panic_hook")]
|
||||||
console_error_panic_hook::set_once();
|
console_error_panic_hook::set_once();
|
||||||
|
|
||||||
/*console::log_1(&"before test schur 60".into());*/
|
|
||||||
/*let test_rand_mat = OMatrix::<f64, U60, U60>::identity();*/
|
|
||||||
/*let test_rot_step = OMatrix::<f64, U56, U56>::identity();*/
|
|
||||||
/*let test_schur = test_rand_mat.schur();
|
|
||||||
console::log_1(&format!("after test schur").into());
|
|
||||||
let test_eigvals = test_schur.complex_eigenvalues();
|
|
||||||
console::log_1(&format!("after test eigenvalues").into());*/
|
|
||||||
|
|
||||||
sycamore::render(|| {
|
sycamore::render(|| {
|
||||||
let time_res: usize = 100;
|
let time_res: usize = 100;
|
||||||
let time_step = create_signal(0.0);
|
let time_step = create_signal(0.0);
|
||||||
|
Loading…
Reference in New Issue
Block a user