Encapsulate gradient descent code
The completed gram matrix from this commit matches the one from commit
e7dde58
to six decimal places.
This commit is contained in:
parent
e7dde5800c
commit
133519cacb
100
engine-proto/gram-test/Engine.jl
Normal file
100
engine-proto/gram-test/Engine.jl
Normal file
@ -0,0 +1,100 @@
|
|||||||
|
module Engine
|
||||||
|
|
||||||
|
using LinearAlgebra
|
||||||
|
using SparseArrays
|
||||||
|
|
||||||
|
export Q, DescentHistory, realize_gram
|
||||||
|
|
||||||
|
# the Lorentz form
|
||||||
|
Q = diagm([1, 1, 1, 1, -1])
|
||||||
|
|
||||||
|
# the difference between the matrices `target` and `attempt`, projected onto the
|
||||||
|
# subspace of matrices whose entries vanish at each empty index of `target`
|
||||||
|
function proj_diff(target::SparseMatrixCSC{T, <:Any}, attempt::Matrix{T}) where T
|
||||||
|
J, K, values = findnz(target)
|
||||||
|
result = zeros(size(target)...)
|
||||||
|
for (j, k, val) in zip(J, K, values)
|
||||||
|
result[j, k] = val - attempt[j, k]
|
||||||
|
end
|
||||||
|
result
|
||||||
|
end
|
||||||
|
|
||||||
|
# a type for keeping track of gradient descent history
|
||||||
|
struct DescentHistory{T}
|
||||||
|
scaled_loss::Array{T}
|
||||||
|
stepsize::Array{T}
|
||||||
|
backoff_steps::Array{Int64}
|
||||||
|
|
||||||
|
function DescentHistory{T}(
|
||||||
|
scaled_loss = Array{T}(undef, 0),
|
||||||
|
stepsize = Array{T}(undef, 0),
|
||||||
|
backoff_steps = Int64[]
|
||||||
|
) where T
|
||||||
|
new(scaled_loss, stepsize, backoff_steps)
|
||||||
|
end
|
||||||
|
end
|
||||||
|
|
||||||
|
# seek a matrix `L` for which `L'QL` matches the sparse matrix `gram` at every
|
||||||
|
# explicit entry of `gram`. use gradient descent starting from `guess`
|
||||||
|
function realize_gram(
|
||||||
|
gram::SparseMatrixCSC{T, <:Any},
|
||||||
|
guess::Matrix{T};
|
||||||
|
scaled_tol = 1e-30,
|
||||||
|
target_improvement = 0.5,
|
||||||
|
init_stepsize = 1.0,
|
||||||
|
backoff = 0.9,
|
||||||
|
max_descent_steps = 600,
|
||||||
|
max_backoff_steps = 110
|
||||||
|
) where T <: Number
|
||||||
|
# start history
|
||||||
|
history = DescentHistory{T}()
|
||||||
|
|
||||||
|
# scale tolerance
|
||||||
|
scale_adjustment = sqrt(T(nnz(gram)))
|
||||||
|
tol = scale_adjustment * scaled_tol
|
||||||
|
|
||||||
|
# initialize variables
|
||||||
|
stepsize = init_stepsize
|
||||||
|
L = copy(guess)
|
||||||
|
|
||||||
|
# do gradient descent
|
||||||
|
Δ_proj = proj_diff(gram, L'*Q*L)
|
||||||
|
loss = norm(Δ_proj)
|
||||||
|
for step in 1:max_descent_steps
|
||||||
|
# stop if the loss is tolerably low
|
||||||
|
if loss < tol
|
||||||
|
break
|
||||||
|
end
|
||||||
|
|
||||||
|
# find negative gradient of loss function
|
||||||
|
neg_grad = 4*Q*L*Δ_proj
|
||||||
|
slope = norm(neg_grad)
|
||||||
|
|
||||||
|
# store current position and loss
|
||||||
|
L_last = L
|
||||||
|
loss_last = loss
|
||||||
|
push!(history.scaled_loss, loss / scale_adjustment)
|
||||||
|
|
||||||
|
# find a good step size using backtracking line search
|
||||||
|
push!(history.stepsize, 0)
|
||||||
|
push!(history.backoff_steps, max_backoff_steps)
|
||||||
|
for backoff_steps in 0:max_backoff_steps
|
||||||
|
history.stepsize[end] = stepsize
|
||||||
|
L = L_last + stepsize * neg_grad
|
||||||
|
Δ_proj = proj_diff(gram, L'*Q*L)
|
||||||
|
loss = norm(Δ_proj)
|
||||||
|
improvement = loss_last - loss
|
||||||
|
if improvement >= target_improvement * stepsize * slope
|
||||||
|
history.backoff_steps[end] = backoff_steps
|
||||||
|
break
|
||||||
|
end
|
||||||
|
stepsize *= backoff
|
||||||
|
end
|
||||||
|
end
|
||||||
|
|
||||||
|
# return the factorization and its history
|
||||||
|
push!(history.scaled_loss, loss / scale_adjustment)
|
||||||
|
L, history
|
||||||
|
end
|
||||||
|
|
||||||
|
end
|
@ -1,28 +1,9 @@
|
|||||||
using LinearAlgebra
|
include("Engine.jl")
|
||||||
|
|
||||||
using SparseArrays
|
using SparseArrays
|
||||||
using AbstractAlgebra
|
using AbstractAlgebra
|
||||||
using PolynomialRoots
|
using PolynomialRoots
|
||||||
|
|
||||||
# testing Gram matrix recovery using a homemade gradient descent routine
|
|
||||||
|
|
||||||
# === gradient descent ===
|
|
||||||
|
|
||||||
# the difference between the matrices `target` and `attempt`, projected onto the
|
|
||||||
# subspace of matrices whose entries vanish at each empty index of `target`
|
|
||||||
function proj_diff(target, attempt)
|
|
||||||
J, K, values = findnz(target)
|
|
||||||
result = zeros(BigFloat, size(target)...)
|
|
||||||
for (j, k, val) in zip(J, K, values)
|
|
||||||
result[j, k] = val - attempt[j, k]
|
|
||||||
end
|
|
||||||
result
|
|
||||||
end
|
|
||||||
|
|
||||||
# === example ===
|
|
||||||
|
|
||||||
# the Lorentz form
|
|
||||||
Q = diagm([1, 1, 1, 1, -1])
|
|
||||||
|
|
||||||
# initialize the partial gram matrix for an arrangement of seven spheres in
|
# initialize the partial gram matrix for an arrangement of seven spheres in
|
||||||
# which spheres 1 through 5 are mutually tangent, and spheres 3 through 7 are
|
# which spheres 1 through 5 are mutually tangent, and spheres 3 through 7 are
|
||||||
# also mutually tangent
|
# also mutually tangent
|
||||||
@ -61,50 +42,13 @@ guess = sqrt(0.5) * BigFloat[
|
|||||||
1 1 1 1 2 0.2 0.1;
|
1 1 1 1 2 0.2 0.1;
|
||||||
]
|
]
|
||||||
|
|
||||||
# search parameters
|
|
||||||
steps = 600
|
|
||||||
line_search_max_steps = 100
|
|
||||||
init_stepsize = BigFloat(1)
|
|
||||||
step_shrink_factor = BigFloat(0.9)
|
|
||||||
target_improvement_factor = BigFloat(0.5)
|
|
||||||
|
|
||||||
# complete the gram matrix using gradient descent
|
# complete the gram matrix using gradient descent
|
||||||
loss_history = Array{BigFloat}(undef, steps + 1)
|
L, history = Engine.realize_gram(gram, guess)
|
||||||
stepsize_history = Array{BigFloat}(undef, steps)
|
completed_gram = L'*Engine.Q*L
|
||||||
line_search_depth_history = fill(line_search_max_steps, steps)
|
|
||||||
stepsize = init_stepsize
|
|
||||||
L = copy(guess)
|
|
||||||
Δ_proj = proj_diff(gram, L'*Q*L)
|
|
||||||
loss = norm(Δ_proj)
|
|
||||||
for step in 1:steps
|
|
||||||
# find negative gradient of loss function
|
|
||||||
neg_grad = 4*Q*L*Δ_proj
|
|
||||||
slope = norm(neg_grad)
|
|
||||||
|
|
||||||
# store current position and loss
|
|
||||||
L_last = L
|
|
||||||
loss_last = loss
|
|
||||||
loss_history[step] = loss
|
|
||||||
|
|
||||||
# find a good step size using backtracking line search
|
|
||||||
for line_search_depth in 1:line_search_max_steps
|
|
||||||
stepsize_history[step] = stepsize
|
|
||||||
global L = L_last + stepsize * neg_grad
|
|
||||||
global Δ_proj = proj_diff(gram, L'*Q*L)
|
|
||||||
global loss = norm(Δ_proj)
|
|
||||||
improvement = loss_last - loss
|
|
||||||
if improvement >= target_improvement_factor * stepsize * slope
|
|
||||||
line_search_depth_history[step] = line_search_depth
|
|
||||||
break
|
|
||||||
end
|
|
||||||
global stepsize *= step_shrink_factor
|
|
||||||
end
|
|
||||||
end
|
|
||||||
completed_gram = L'*Q*L
|
|
||||||
loss_history[steps + 1] = loss
|
|
||||||
println("Completed Gram matrix:\n")
|
println("Completed Gram matrix:\n")
|
||||||
display(completed_gram)
|
display(completed_gram)
|
||||||
println("\nLoss: ", loss, "\n")
|
println("\nSteps: ", size(history.stepsize, 1))
|
||||||
|
println("Loss: ", history.scaled_loss[end], "\n")
|
||||||
|
|
||||||
# === algebraic check ===
|
# === algebraic check ===
|
||||||
|
|
||||||
|
Loading…
Reference in New Issue
Block a user