Rust trial: write benchmark

This commit is contained in:
Aaron Fenyes 2024-08-09 15:12:44 -07:00
parent 6b0fad89dc
commit 0b3fe689cd
7 changed files with 345 additions and 0 deletions

3
lang-trials/rust-benchmark/.gitignore vendored Normal file
View File

@ -0,0 +1,3 @@
target/*
dist/*
Cargo.lock

View File

@ -0,0 +1,35 @@
[package]
name = "sycamore-trial"
version = "0.1.0"
authors = ["Aaron"]
edition = "2021"
[features]
default = ["console_error_panic_hook"]
[dependencies]
nalgebra = "0.33.0"
sycamore = "0.9.0-beta.2"
typenum = "1.17.0"
# The `console_error_panic_hook` crate provides better debugging of panics by
# logging them with `console.error`. This is great for development, but requires
# all the `std::fmt` and `std::panicking` infrastructure, so isn't great for
# code size when deploying.
console_error_panic_hook = { version = "0.1.7", optional = true }
[dependencies.web-sys]
version = "0.3.69"
features = [
'CanvasRenderingContext2d',
'HtmlCanvasElement',
'Window',
'Performance'
]
[dev-dependencies]
wasm-bindgen-test = "0.3.34"
[profile.release]
opt-level = "s" # optimize for small code size
debug = true # include debug symbols

View File

@ -0,0 +1,9 @@
<!DOCTYPE html>
<html>
<head>
<meta charset="utf-8"/>
<title>The circular law</title>
<link data-trunk rel="css" href="main.css"/>
</head>
<body></body>
</html>

View File

@ -0,0 +1,23 @@
body {
margin-left: 20px;
margin-top: 20px;
color: #fcfcfc;
background-color: #202020;
}
#app {
display: flex;
flex-direction: column;
width: 600px;
}
canvas {
float: left;
background-color: #020202;
border-radius: 10px;
margin-top: 5px;
}
input {
margin-top: 5px;
}

View File

@ -0,0 +1,13 @@
in profiling, most time is being spent in the `reflect` method:
f64:
sycamore_trial-3d0aca3efee8b5fd.wasm.nalgebra::geometry::reflection::Reflection<T,D,S>::reflect::h7899977a4ba0b1d3
sycamore_trial-3d0aca3efee8b5fd.wasm.nalgebra::geometry::reflection::Reflection<T,D,S>::reflect::hc337c3cb6e3b4061
sycamore_trial-3d0aca3efee8b5fd.wasm.nalgebra::geometry::reflection::Reflection<T,D,S>::reflect_rows::h43d0f6838d0c2833
f32:
sycamore_trial-3d0aca3efee8b5fd.wasm.nalgebra::geometry::reflection::Reflection<T,D,S>::reflect::h0e8ec322f198f847
sycamore_trial-3d0aca3efee8b5fd.wasm.nalgebra::geometry::reflection::Reflection<T,D,S>::reflect::h9928bdd5e72743ea
sycamore_trial-3d0aca3efee8b5fd.wasm.nalgebra::geometry::reflection::Reflection<T,D,S>::reflect_rows::h49f571fd8fc9b0f2
in one test, we spent 4000 ms in "WASM closure", but the enveloping "VoidFunction" takes 1300 ms longer. in another test, though, there's no overhang; the 7000 ms we spent in `rand_eigval_series` accounts for basically the entire load time, and matches the clock timing

View File

@ -0,0 +1,176 @@
use nalgebra::{*, allocator::Allocator};
use std::f64::consts::{PI, E};
use web_sys::console;
/*use std::ops::Sub;*/
/*use typenum::{B1, UInt, UTerm};*/
/*pub fn eigvals_rotated<N>(A: SMatrix<f64, N, N>, time: f64): complex_eigenvalues(&self) -> OVector<NumComplex<T>, D>*/
/* static matrices. should only be used when the dimension is really small */
/*pub fn rand_eigval_series<N>(time_res: usize) -> Vec<OVector<Complex<f64>, N>>
where
N: ToTypenum + DimName + DimSub<U1>,
DefaultAllocator:
Allocator<N> +
Allocator<N, N> +
Allocator<<N as DimSub<U1>>::Output> +
Allocator<N, <N as DimSub<U1>>::Output>
{
// initialize the random matrix
let dim = N::try_to_usize().unwrap();
console::log_1(&format!("dimension {dim}").into());
let mut rand_mat = OMatrix::<f64, N, N>::from_fn(|j, k| {
let n = j*dim + k;
E*((n*n) as f64) % 2.0 - 1.0
}) * (3.0 / (dim as f64)).sqrt();
/*let mut rand_mat = OMatrix::<f64, N, N>::identity();*/
// initialize the rotation step
let mut rot_step = OMatrix::<f64, N, N>::identity();
let max_freq = 4;
for n in (0..dim).step_by(2) {
let ang = PI * ((n % max_freq) as f64) / (time_res as f64);
let ang_cos = ang.cos();
let ang_sin = ang.sin();
rot_step[(n, n)] = ang_cos;
rot_step[(n+1, n)] = ang_sin;
rot_step[(n, n+1)] = -ang_sin;
rot_step[(n+1, n+1)] = ang_cos;
}
// find the eigenvalues
let mut eigval_series = Vec::<OVector<Complex<f64>, N>>::with_capacity(time_res);
console::log_1(&"before engine eigenvalues".into());
eigval_series.push(rand_mat.complex_eigenvalues());
console::log_1(&"after engine eigenvalues".into());
for _ in 1..time_res {
rand_mat = &rot_step * rand_mat;
eigval_series.push(rand_mat.complex_eigenvalues());
}
eigval_series
}*/
/* another attempt at static matrices. i couldn't get the types to work out */
/*pub fn random_eigval_series<const N: usize>(time_res: usize) -> Vec<OVector<Complex<f64>, Const<N>>>
where
Const<N>: ToTypenum,
<Const<N> as ToTypenum>::Typenum: Sub<UInt<UTerm, B1>>,
<<Const<N> as ToTypenum>::Typenum as Sub<UInt<UTerm, B1>>>::Output: ToConst
{
// initialize the random matrix
/*let mut rand_mat = SMatrix::<f64, N, N>::zeros();
for n in 0..N*N {
rand_mat[n] = E*((n*n) as f64) % 2.0 - 1.0;
}*/
let rand_mat = OMatrix::<f64, Const<N>, Const<N>>::from_fn(|j, k| {
let n = j*N + k;
E*((n*n) as f64) % 2.0 - 1.0
});
// initialize the rotation step
let mut rot_step = OMatrix::<f64, Const<N>, Const<N>>::identity();
let max_freq = 4;
for n in (0..N).step_by(2) {
let ang = PI * ((n % max_freq) as f64) / (time_res as f64);
let ang_cos = ang.cos();
let ang_sin = ang.sin();
rot_step[(n, n)] = ang_cos;
rot_step[(n+1, n)] = ang_sin;
rot_step[(n, n+1)] = -ang_sin;
rot_step[(n+1, n+1)] = ang_cos;
}
// find the eigenvalues
let mut eigvals = Vec::<OVector<Complex<f64>, Const<N>>>::with_capacity(time_res);
unsafe { eigvals.set_len(time_res); }
for t in 0..time_res {
eigvals[t] = rand_mat.complex_eigenvalues();
}
eigvals
}*/
/* dynamic matrices */
pub fn rand_eigval_series<N>(time_res: usize) -> Vec<OVector<Complex<f64>, Dyn>>
where
N: ToTypenum + DimName + DimSub<U1>,
DefaultAllocator:
Allocator<N> +
Allocator<N, N> +
Allocator<<N as DimSub<U1>>::Output> +
Allocator<N, <N as DimSub<U1>>::Output>
{
// initialize the random matrix
let dim = N::try_to_usize().unwrap();
console::log_1(&format!("dimension {dim}").into());
let mut rand_mat = DMatrix::<f64>::from_fn(dim, dim, |j, k| {
let n = j*dim + k;
E*((n*n) as f64) % 2.0 - 1.0
}) * (3.0 / (dim as f64)).sqrt();
// initialize the rotation step
let mut rot_step = DMatrix::<f64>::identity(dim, dim);
let max_freq = 4;
for n in (0..dim).step_by(2) {
let ang = PI * ((n % max_freq) as f64) / (time_res as f64);
let ang_cos = ang.cos();
let ang_sin = ang.sin();
rot_step[(n, n)] = ang_cos;
rot_step[(n+1, n)] = ang_sin;
rot_step[(n, n+1)] = -ang_sin;
rot_step[(n+1, n+1)] = ang_cos;
}
// find the eigenvalues
let mut eigval_series = Vec::<OVector<Complex<f64>, Dyn>>::with_capacity(time_res);
console::log_1(&"before engine eigenvalues".into());
eigval_series.push(rand_mat.complex_eigenvalues());
console::log_1(&"after engine eigenvalues".into());
for _ in 1..time_res {
rand_mat = &rot_step * rand_mat;
eigval_series.push(rand_mat.complex_eigenvalues());
}
eigval_series
}
/* dynamic single float matrices */
/*pub fn rand_eigval_series<N>(time_res: usize) -> Vec<OVector<Complex<f32>, Dyn>>
where
N: ToTypenum + DimName + DimSub<U1>,
DefaultAllocator:
Allocator<N> +
Allocator<N, N> +
Allocator<<N as DimSub<U1>>::Output> +
Allocator<N, <N as DimSub<U1>>::Output>
{
// initialize the random matrix
let dim = N::try_to_usize().unwrap();
console::log_1(&format!("dimension {dim}").into());
let mut rand_mat = DMatrix::<f32>::from_fn(dim, dim, |j, k| {
let n = j*dim + k;
(E as f32)*((n*n) as f32) % 2.0_f32 - 1.0_f32
}) * (3.0_f32 / (dim as f32)).sqrt();
// initialize the rotation step
let mut rot_step = DMatrix::<f32>::identity(dim, dim);
let max_freq = 4;
for n in (0..dim).step_by(2) {
let ang = (PI as f32) * ((n % max_freq) as f32) / (time_res as f32);
let ang_cos = ang.cos();
let ang_sin = ang.sin();
rot_step[(n, n)] = ang_cos;
rot_step[(n+1, n)] = ang_sin;
rot_step[(n, n+1)] = -ang_sin;
rot_step[(n+1, n+1)] = ang_cos;
}
// find the eigenvalues
let mut eigval_series = Vec::<OVector<Complex<f32>, Dyn>>::with_capacity(time_res);
console::log_1(&"before engine eigenvalues".into());
eigval_series.push(rand_mat.complex_eigenvalues());
console::log_1(&"after engine eigenvalues".into());
for _ in 1..time_res {
rand_mat = &rot_step * rand_mat;
eigval_series.push(rand_mat.complex_eigenvalues());
}
eigval_series
}*/

View File

@ -0,0 +1,86 @@
use nalgebra::*;
use std::f64::consts::PI as PI;
use sycamore::{prelude::*, rt::{JsCast, JsValue}};
use web_sys::{console, window};
mod engine;
fn main() {
// set up a config option that forwards panic messages to `console.error`
#[cfg(feature = "console_error_panic_hook")]
console_error_panic_hook::set_once();
/*console::log_1(&"before test schur 60".into());*/
/*let test_rand_mat = OMatrix::<f64, U60, U60>::identity();*/
/*let test_rot_step = OMatrix::<f64, U56, U56>::identity();*/
/*let test_schur = test_rand_mat.schur();
console::log_1(&format!("after test schur").into());
let test_eigvals = test_schur.complex_eigenvalues();
console::log_1(&format!("after test eigenvalues").into());*/
sycamore::render(|| {
let time_res: usize = 100;
let time_step = create_signal(0.0);
let run_time_report = create_signal(-1.0);
let display = create_node_ref();
on_mount(move || {
let performance = window().unwrap().performance().unwrap();
let start_time = performance.now();
let eigval_series = engine::rand_eigval_series::<U60>(time_res);
let run_time = performance.now() - start_time;
run_time_report.set(run_time);
let canvas = display
.get::<DomNode>()
.unchecked_into::<web_sys::HtmlCanvasElement>();
let ctx = canvas
.get_context("2d")
.unwrap()
.unwrap()
.dyn_into::<web_sys::CanvasRenderingContext2d>()
.unwrap();
ctx.set_fill_style(&JsValue::from("white"));
create_effect(move || {
// center and normalize the coordinate system
let width = canvas.width() as f64;
let height = canvas.height() as f64;
ctx.set_transform(1.0, 0.0, 0.0, -1.0, 0.5*width, 0.5*height).unwrap();
// clear the previous frame
ctx.clear_rect(-0.5*width, -0.5*width, width, height);
// find the resolution
const R_DISP: f64 = 1.5;
let res = width / (2.0*R_DISP);
// draw the eigenvalues
let eigvals = &eigval_series[time_step.get() as usize];
for n in 0..eigvals.len() {
ctx.begin_path();
ctx.arc(
/* typecast only needed for single float version */
res * f64::from(eigvals[n].re),
res * f64::from(eigvals[n].im),
3.0,
0.0, 2.0*PI
).unwrap();
ctx.fill();
}
});
});
view! {
div(id="app") {
div { (run_time_report.get()) " ms" }
canvas(ref=display, width="600", height="600")
input(
type="range",
max=(time_res - 1).to_string(),
bind:valueAsNumber=time_step
)
}
}
});
}